Towards Co-designing Neural Network Function
Approximators with In-SRAM Computing

Shamma Nasrin Diaa Badawi
University of Illinois at Chicago University of Illinois at Chicago
snasri2@uic.edu dbadaw2@uic.edu
Ahmet Enis Cetin Wilfred Gomes

University of Illinois at Chicago Intel Corporation
aecyyQuic.edu wilfred.gomes@intel.com

Amit Ranjan Trivedi
University of Illinois at Chicago
amitrtQ@uic.edu

Abstract

We propose a co-design approach for compute-in-memory inference for deep neu-
ral networks (DNN). We use multiplication-free function approximators based on
{1 norm along with a co-adapted processing array and compute flow. Using the
approach, we overcame many deficiencies in the current art of in-SRAM DNN
processing, such as the need for DACs at each operating SRAM row/column, high
precision ADCs, and limited support for multi-bit precision weights, and limited
vector-scale parallelism. We also propose an SRAM-immersed successive approxi-
mation ADC (SA-ADC). We exploit the parasitic capacitance of bit lines of SRAM
array as a capacitive DAC, allowing low area implementation of within-SRAM SA-
ADC. Our 8x62 SRAM macro requires a 5-bit ADC, achieves 105TOPS/W with
8-bit input/weight processing at 45 nm CMOS. We evaluated the performance of
our proposed network for MNIST, CIFAR10, and CIFAR100 datasets. We chose a
network configuration which adaptively mixes multiplication-free and regular oper-
ators. The network configurations utilize the multiplication-free operator for more
than 85% operations from the total. The selected configurations are 98.6% accurate
for MNIST, 90.2% for CIFAR10, and 66.9% for CIFAR100. Since most of the
operations in the considered configurations are based on proposed SRAM macros,
our compute-in-memory’s efficiency benefits broadly translate to the system-level.

1 Introduction

In many practical applications, deep neural networks (DNNs) have shown remarkable prediction
accuracy. DNNs in these applications typically utilize thousands to millions of parameters (i.e.,
weights) and are trained over a huge number of example patterns. Operating over such a large
parametric space, which is carefully orchestrated over multiple abstraction levels (i.e., hidden layers),
facilitates DNNs with a superior generalization and learning capacity but also presents critical
inference constraints, especially when considering real-time and/or low power applications. For
instance, when DNNs are mapped on a traditional computing engine, the inference performance is
strangled by extensive memory accesses, and the high performance of the processing engine helps
little. A radical approach, gaining attention to address this performance challenge of DNN, is to

6th Workshop on Energy Efficient Machine Learning and Cognitive Computing (EMC2 2020), Online (San Jose,
California).

4 4 100
—— Our approach . Dataset Accuracy on test set
3 —— Binary neural network | 3 —— Binary neural network S ST Conventional | Binary [Multiplication
é 2 2, \§ 801 |+ ciFaRI0 free
= S 570 CIFAR100 MNIST 99.01% 97% 98.6%
3
| 8
1 < 60 CIFARIO | 90.9% | 85% | 902%
0 0 50 ‘ - .
0 10 20 30 o 20 20 0 il 8 7 6 5 a4 |CFAR100] 67.88% B 66.9%
of epoch #of epoch Quantization bits
(@ (b) © (d)

Figure 1: Training curves for the multiplication-free NN operator on (a) MNIST and (b) CIFAR10 data sets.
(c) The effect of quantization on multiplication-free operator. (d) Multiplication-free operator vs. conventional
DNN and binary neural network (BNN)

design memory units that can not only store DNN weights but also locally process DNN layers.
Therefore, using such ‘compute-in-memory’ high volume data traffic between processor and memory
units is obviated, and the critical bottleneck can be alleviated. Moreover, a mixed-signal in-memory
processing of DNN operands reduces necessary operations for DNN inference. For example, using
charge/current-based representation of the operands, the accumulation of products simply reduces
to current/charge summation over a wire. In recent years, several in-SRAM DNN implementations
have been shown. However, many critical limitations remain, which inhibit the scalability of the
processing. Using CONV-SRAM]J1] as a motivating example, we highlight these limitations — notably,
the challenges are common to most other in-SRAM applications too. To compute the inner product
of [-element weight and input vectors w and x, [-DACs and one ADC are required. Since DACs
are concurrently active, they lead to both high area and power. An ADC is needed to digitize the
inner product of w and x vectors. If x is n-bit and ADC combines the output of [cells, the minimum
necessary precision of the ADC is ~ n + logs (1) to avoid any quantization loss.

Addressing the challenges of state-of-the-art, we propose the following core concepts:

1. We use a multiplication-free neural network operator that eliminates high-precision multipli-
cations in input-weight correlation[2]. In the new operator, the correlation of weight w and
input x is represented as

wdx= Z sign(z;) - abs(w;) + sign(w;) - abs(z;) (1)

K3

Here, - is an element-wise multiplication operator, + is element-wise addition operator,
and Y is vector sum operator. sign() operator is -1 and abs() operator produces absolute
unsigned value of the operand. Therefore, in Eq. [T} the correlation operator is inherently
designed to only multiply a one-bit element of sign(x) against full precision w, and one-bit
sign(w) against x. By avoiding direct multiplications between full precision variables,
DACs can be avoided in in-memory computing.Additionally, we reformulate Eq. [T|such
a way that allows processing with single product port of SRAM cells; thus, it can reduce
dynamic energy.

2. We also discuss that parasitic capacitance of bit lines of SRAM array can be exploited as a
capacitive digital-to-analog converter (DAC) for successive approximation-based ADC (SA-
ADC). In our architecture, when bit lines in one half of the array compute the weight-input
correlation, bit lines in the other half implement binary search of SA-ADC to digitize the
correlation output. Remarkably, the proposed DNN operator also helps reducing precision
constraints on SA-ADC. With the proposed operator, each SRAM cell only performs 1-bit
logic operation; thus, to digitize the output of [columns, ADC with logs(l) precision is
needed. By simplifying data converters, our scheme can also achieve higher vector-scale
parallelism, i.e., allows processing a higher number of parallel columns (/) with the same
ADC complexity than in [1].

Sec. II introduces the co-adapted multiplication-free operators for the in-SRAM deep neural network.
Sec. III gives an overview of compute-in-memory macro based on multiplication-free operator. Sec.
IV discusses power/performance characterization of the proposed compute-in-SRAM macro. Sec. V
concludes.

(a) UArray architecture and processing elements . WWL v _t._’ i ; o[o[oJo[]o]o]o]0] sign(w) |
¢ -_,J_ J__,_3_51 ANARAARANER =
o o [} o[I[1[1]o[o[1]0[0]abs(w) [<
) 2 Rl S e [Tof1{o[1[0[0[1]0 =
g e Weights ———— '
§ 51170 1o})} sign(x) T
2 CL PL [2]4]5 =
g R IViC cell 1]-3[6 abs(x) [§
3 © Tnput =
S feature map
> (d) Column-wise reconfiguration bit
& Precharge ADC
— Product Precharge
- s Average Sum
'Z‘-‘ ry
EN &) > Compare
S| = a MAV SAR
CLK® — ”" Skiploading Feed column inputs
pChannels Seee SO EN CLK input bits ~ from the lower pArray (e) CLK

Figure 2: (a) pArray and pChannel architecture for w € x processing in a compute-in-SRAM macro. (b) 8-T
SRAM cell for in-memory processing. SRAM cell has additional transistors, colored red, for input-weight
correlation. (c) Mapping of sign bits and the absolute values of weights and inputs on pArrays and pChannels.
(d) Stitching of ptArray columns by reconfiguration bits in pChannels. (e) Instruction cycles for in-SRAM
processing.

2 Co-designed Multiplication-free(MF) NN Operator and Accuracy results

Multiplication-free DNN operator was presented in[2]. In this work, we expand on the potential of
multiplication-free operators to considerably reduce the complexity of SRAM-based compute-in-
memory design. Compared to[2], we adjusted the operator with abs() operation on operands w and x
in Eq. (1) to further simplify compute-in-memory processing steps. Our later discussion will show
that the adjusted operator also achieves high prediction accuracy on various benchmark data sets.
Note that a multiplication-free operator in Eq. (1) is based on the ¢; norm, since x & x = 2||z||;. In
traditional neural networks, neurons perform inner products to compute the correlation between the
input vector with the weights of the neuron. We define a new neuron by replacing the affine transform
of a traditional neuron using co-designed NN operator as ¢(a(x @ w) + b) where w € R%, a,b € R
are weights, the scaling coefficient and the bias, respectively. Moreover, since the proposed NN
operator is nonlinear itself, an additional nonlinear activation layer (e.g., ReLU) is not needed, i.e.,
¢() can be an identity function. Most neural network structures, including multi-layer perceptrons
(MLP), recurrent neural networks (RNN), and convolutional neural networks (CNN), can be easily
converted into such an compute-in-memory compatible network structures by just replacing ordinary
neurons with the activation functions defined using ¢ operations without modification of the topology
and the general structure. We characterize the prediction accuracy of the proposed NN operator
for MNIST, CIFAR10, and CIFAR100 data-sets. For MNIST, we simulate the LeNet-5 network.
For CIFAR10, we use a convolutional neural network consisting of five convolution layers and two
fully connected layers. For CIFAR100, we choose MobileNetV2. Figures [[(a-b) show the training
curve for the multiplication-free operator compared to BNN under identical training conditions for
MNIST and CIFAR10. In Figure [T{c), the prediction accuracy of multiplication-free operator is
also amenable to input/weight quantization. Figure[T(d) summarizes test-set accuracy for the data
sets with conventional, multiplication-free, and binarized network operators. For CIFAR10 results,
the convolution layers are binarized in BNN and made multiplication-free in the proposed network,
respectively, while the fully-connected layers are implemented using regular multiplications. The
accuracy of the multiplication-free operator is also quite competitive to the conventional operator on
various datasets.

3 Overview of Compute-in-SRAM Macro based on MF Operator

Figure[2[(a) shows the proposed design of compute-in-SRAM macro for multiplication-free operator-
based DNN inference. In the proposed design, an SRAM macro consists of pArrays and pChannels,
as shown in the figure. Each pArray is dedicated to storing one weight channel. DNN weights are
arranged across columns in a pArray where each bit plane of weights is arranged in a row. Figure
2[b) shows the proposed 8T SRAM cell used for the in-SRAM processing of the operator. The added
transistors are selected by the row and column select lines (RL and CL) and operate on the product
bit line (PL). Each pArray is augmented with a yChannel. pChannels convey digital inputs/outputs
to/from pArrays. pChannels are essentially low overhead serial-in serial-out digital paths based on

IlISAR logic
[l Comparator

Case-B
+

Case-A

¥
Koo 2
70 20 EmAav > g
: = :
060 |- Leakage 8 g
2 2 Cltekage | < g
5 < : 2
50 o ‘400 s 4
£ et g e 0y, € sgion
= B g -~ »
‘g 40 " E £4 \N!e‘ (a) C/%/] 4 W‘é‘ g\\“"““ ®
(9]
E 30 QP Estimation parameters for
@ 20 é Case-A pArray’s power-performance
o 5 i} Parameter Value
10 Co 2fF
) Vecu| 1V
0 0 2 . N Ec 15f)
02 0.4 0.6 038 1 17/9%/ 44 mwed\s\un Esar 3.11)
Hold Voltaoe(V) @ wed © @

(a) (b) (©)

Figure 3: Power performance of SRAM array. (a) The product line discharge time and SRAM leakage power at
varying hold voltage. (b) Distribution of dynamic and leakage energy for a pArray for performing MAV and
within-SRAM digitization. (c) Surface plot for a. accuracy for MNIST characterization, and b. latency and c.
energy of compute-in-SRAM macros at varying precision of weights and ADC.

scan-registers. Figure 2(d) shows pChannel-based column merging between two pArrays. Figure
P(c) illustrates input/weight mapping to SRAM macro and operation sequence. For step(x) - abs(w)
step in w @ x, step(x) vector is loaded on the ;Channel and operated against abs(w) rows of pArray.
For step(w) - abs(x) step, bitplanes of abs(x) vector are sequentially loaded on the ;#Channel and
operated against step(w) row of the pArray. In a pArray, to compute x @ w, the operation proceeds
by bit planes. If the left half computes the weight-input product, the right half digitizes. Both halves
subsequently exchange their operating mode to process weights stored in the right half. Figure 2](e)
shows the instruction sequence for the left half to compute MAV consisting of precharge, product,
and average stages.

Since MAV output at the sum line (SL) is charge-based, an analog-to-digital converter (ADC) is
necessary to convert the output into digital bits. In Figure [2[a), the right half of the array implements
an SRAM-immersed successive approximation (SA) data converter to digitize the output at the left
sum line (SLL). Reference voltages for SA-based data conversion are generated by exploiting PL
parasitic in the right half. The product lines of the right half are charged and discharged according to
the SAR logic to produce the reference voltage at the right sum line (SLR). Figure 2{e) also shows the
instruction cycles for the data conversion consisting of precharge, average, compare, and SAR steps.

4 Power-Performance Characteristics of Compute-in-SRAM Macro

In this section, we discuss power—performance characteristics of compute-in-SRAM macro presented
earlier. We use LeNET-5 for MNIST characterization as a running use-case to discuss various
design and power optimization opportunities. The network weights for LeNET-5 are trained using
TensorFlow. Data transfer among SRAM arrays and post-processing of array’s output, such as
applying max-pooling, is simulated functionally. Compute-in-SRAM operations are simulated using
HSPICE in 45 nm CMOS technology using predictive technology models. Each pArray in SRAM-
macro has 8 rows and 62 columns. A pArray is split into halves, where each half stores a weighted
channel by flattening it to one-dimensional. pArrays process 8-bit weights against 8-bit inputs. In
each SA cycle in pArrays, MAV is digitized to 5-bit output. If the flattened filter width is more than
31, it is partitioned and mapped on more pArrays.

In Figure[3|a), reducing the hold voltage of SRAM cells reduces leakage current through the cells;
however, also increases the PL discharge time during product computation. The average leakage
power of a pArray is 0.97 nW at the typical corner. Figure [3{b) shows the distribution of power
among various operations in a pArray. A pArray consumes ~7.6 yW of active power to perform the
MAV operation while operating at 1 GHz. In Figure 3{c), we explore the design space of varying
weight precision (IWp) and ADC precision (Ap) for predictions on MNIST dataset. The following
determines the clock cycles (7) and average energy (€) for the unit operation.

T =Wp x (1 +2Ap) (2a)
Ap—1 ‘
E=Wp x (MCPLV]gCH+ Z E0+ESAR+QZCPLVI§CH) (2b)
1=0

Metric Our B3l Al 5] 16l Network configuration for CIFAR10
Layer | % of % of Ops |Digital| In- | Mixed
Tech (nm) - 23 5 7 65 Params | Operations | Per mem
Weight bits 8-bit 8-bit | 8-bit | 4-bit | 1-bit param
Input bits 8-bit 8-bit | 8-bit | 4-bit | 1-bit | [Convl| <1 67.56 900 R MF | MF
Output bits 16-bit 30-bit| Sbit | 4bit | 5o | [Conv2] 2.09 | 1692 | 784 | R | MF| MF
Fine e TR TRIGI Conv3| 4.18 8.43 144 R MF | MF
iciency %62 pArray 5 .
(TOPs/W)| 84 (830 pArray) Conv4| 8.35 2.74 100 R MF [MF
MNIST 98.6% ~[99.28%|98.2%|98 3%| | ConvS | 16.7 1.38 49 R | MF| MF
CIFAR10 90.2% 91.9%]86.62% 5551 e o7 2:43 L R_ BN R
o I el IS st TP <1 <1 1 R _|MF| R
CIFARI00 Sl 67-5% Test Accuracy (%) 91 | 79 | 902
* CIFAR100 accuracy extracted using MobileNetV?2 Avg. TOPs/W 2.8 105 110091
(a) (b)

Figure 4: (a) Comparison against state-of-the-art, and (b) Different network combination for CIFAR10 data set.

Here, C'py, is the product line (PL) capacitance. Vpc g is the precharge voltage for processing. E¢
and Es g are the average energy of unit operation for the comparator and SA register logic. M
is the number of columns in each half of yt/Array. From our simulations in 45 nm CMOS, Figure
[(c) shows various parameters in the equation. For Cpr,, we add a 20% overhead from the transistor
capacitance to account for the interconnect parasitic.

Figure 4(a) compares our results against the state-of-art on different data sets. For various datasets,
our network configuration was discussed in Sec. II. We achieve better prediction accuracy than the
competitive approaches by processing with multibit precision weights and inputs, whereas many prior
approaches were limited to binarized weights. Our 8 x62 SRAM macro, which requires a 5-bit ADC,
achieves ~105 tera operations per second per Watt (TOPS/W) with 8-bit input/weight processing at
45 nm CMOS. In Figure 4(b), we explore the effect of combining typical operator and multiplication
free operator on accuracy and energy efficiency for CIFAR10 data set.

5 Conclusion

We presented a compute-in-SRAM macro based on a multiplication-free learning operator. The
macro comprises low area/power overhead pArrays and pChannels. Operations in the macro are
DAC-free. pArrays exploit bit line parasitic for low overhead memory-immersed data conversion.
We characterized the accuracy of our scheme on MNIST, CIFAR10, and CIFAR100 data sets. On
an equivalent network configuration, our framework has 1.8x lower error on MNIST and 1.5x
lower error on CIFAR10 compared to the binarized neural network. At 8-bit precision, our 8 x62
compute-in-SRAM pArray achieves ~105 TOPS/W, which is significantly better than the current
compute-in-SRAM designs at matching precision.

References

[1] A. Biswas and A. P. Chandrakasan, “Conv-sram: An energy-efficient sram with in-memory dot-product
computation for low-power convolutional neural networks,” 2019.

[2] C. E. Akbas,, A. Bozkurt, A. E. C, etin, R. C, etin-Atalay, and A. U" ner, “Multiplication-free neural
networks,” 2015.

[3]J. Su, X. Si, Y. Chou, T. Chang, W. Huang, Y. Tu, R. Liu, P. Lu, T. Liu, J. Wang, Z. Zhang, “15.2 a 28nm
64kb inference-training two-way transpose multibit 6t sram computein-memory macro for ai edge chips,” in
ISSCC.

[4]1J. Yue, Z. Yuan, X. Feng, Y. He, Z. Zhang, X. Si, R. Liu, M. Chang, X. Li, H. Yang, and Y. Liu, “14.3
a 65nm computing-in-memory-based cnn processor with 2.9-to-35.8tops/w system energy efficiency using
dynamic-sparsity performance-scaling architecture and energy-efficient inter/intra-macro data reuse,” in ISSCC,
2020, pp. 234-236.

[5]1 Q. Dong, M. E. Sinangil, B. Erbagci, D. Sun, W. Khwa, H. Liao, Y. Wang, and J. Chang, “15.3 a 351tops/w
and 372.4gops computein-memory sram macro in 7nm finfet cmos for machine-learning applications,ISSCC.

[6] Z. Jiang, S. Yin, J. Seo, and M. Seok, “C3sram: An in-memorycomputing sram macro based on robust
capacitive coupling computing mechanism,” IEEE Journal of Solid-State Circuits.

	Introduction
	Co-designed Multiplication-free(MF) NN Operator and Accuracy results
	Overview of Compute-in-SRAM Macro based on MF Operator
	Power–Performance Characteristics of Compute-in-SRAM Macro
	Conclusion

