Recipes for Post-training Quantization
of Deep Neural Networks

Ashutosh Mishra, Christoffer Loffler and Axel Plinge
Fraunhofer Institute for Integrated Circuits IIS, Erlangen/Nuremberg, Germany

Abstract

Given the presence of deep neural networks (DNN5) in all kinds of applications,
the question of optimized deployment is becoming increasingly important. One
important step is the automated size reduction of the model footprint. Of all
the methods emerging, post-training quantization is one of the simplest to apply.
Without needing long processing or access to the training set, a straightforward
reduction of the memory footprint by an order of magnitude can be achieved. A
difficult question is which quantization methodology to use and how to optimize
different parts of the model with respect to different bit width. We present an in-
depth analysis on different types of networks for audio, computer vision, medical
and hand-held manufacturing tools use cases; Each is compressed with fixed and
adaptive quantization and fixed and variable bit width for the individual tensors.

1 Introduction

Artificial neural networks are becoming the de facto solution for many tasks, but are often too large
to run on restricted hardware such as smartphones. By reducing the memory footprint of the model,
the energy consumption is directly reduced [13]. At the same time, for distributed model updates
the models can be distributed faster as the amount of data to be transferred is reduced.

The discipline of “deep compression” [3, 10] focuses on optimizing existing networks by structural
or implementation changes. Most known techniques may be categorized in four principles: The
first, pruning, is the automated removal of less significant weights, filters or neurons. This typically
requires retraining to be effective [3]. Second, low-rank approximation allows to directly remove the
redundancies within the tensors via singular value decomposition (SVD) [18]. Third, quantization
can be used to reduce the bit width of the weights themselves [3]. Finally, entropy coding can be
employed to further reduce the memory footprint in bytes on disc [17].

There are very diverse quantization methods, which we might subdivide by the actual numeric quan-
tization and the scope of weights considered. Numerically, there are uniform and adaptive schemes.
In uniform quantization, the dynamic range is directly mapped to integer values. Different map-
pings are possible [9]. For reducing to fewer bits, it is prudent to use quantization aware training
in order not to lose performance [15]. This requires access to the training data and significant pro-
cessing time. Adaptive quantization is based on the actual distribution of the weight values. It is
implemented as vector quantization methods on the weights. During inference, recovering the scalar
weights simply reduces to a lookup operation of the cluster index from a codebook. Regarding the
scope, one can apply these methods either globally or per layer/tensor. If there are multiple quan-
tizations, the question of bit width selection arises. Optimal bit widths for individual tensors can
preserve the performance of the model with a reduced model size [14]. The selection of these opti-
mal quantization levels leads to a huge optimization search space. Meng et al. introduced a greedy
approach to automatically find a good bit assignment for the individual tensors [8].

In this paper, we investigate quantization-based methods, compare several quantization strategies,
and evaluate the results. They aim to reduce the precision of model parameters while still maintain-

6th Workshop on Energy Efficient Machine Learning and Cognitive Computing (EMC2 2020), Online (San
Jose, California).

ing the model accuracy on the target task. We propose an extension of the greedy method by Meng
et al. [8]. We add a pre-calibration step to achieve better or similar bit assignments faster. On four
different network structures for very diverse use cases, we compare these two with using a global or
tensorwise quantization. We employ both uniform and adaptive quantization for all of them. To the
best of our knowledge, this is the first comparative analysis of all these different variants.

2 Quantization Methods

The task is to search an alternate lower bit representation of weight tensors. Given pre-trained
and batch-norm folded [6] coefficients of a neural network in full precision, our aim is to find an
alternate, reduced bit representation of these weight coefficients. We do not address the question
of quantizing the biases, but restrict ourselves to filter coefficients from convolutional layers and
weights of fully connected layers. In this paper, we compare the following methods and scopes of
quantization.

In the scope of our experiments, we use uniform and adaptive quantization. In uniform quantization
UQ-, we can apply symmetric quantization by using the maximum absolute value as scaler [9].
In adaptive quantization AQ-, encoding of the weights is done by using a clustering algorithm on
the collected scalar weights. For our work, we use K = 2" as the codebook size for n bits with
k-means++ initialization.

One can apply the weight quantization to the whole model at once, looking at all weights as one
big set of numbers. We evaluate this method by using a constant step size based on all the weights
of the model or a single codebook and refer it as -G throughout this paper. On the contrary, using
tensorwise step sizes or codebooks with the same fixed number of bits is denoted by -TF.

One approach for assigning different bit widths per tensor is the greedy approach from [8]: A fixed
global bit width is set for all the tensors. The tensors are processed in order of decreasing size.
For a tensor in current scope, the current bit width is reduced by one before the model is evaluated
on a calibration set. If the model performance drop is within a predefined threshold, the bit width
reduction for the current tensor is repeated until the performance drop threshold is violated, upon
which the previous best bit width is set for the current tensor. This is designated -TA.

We propose to improve the performance of this approach in terms of convergence speed and greedy
bit assignments by computing an optimal global bit width for the previous method as a preprocessing
task. We assign a starting global bit width which is gradually reduced until the model performance
drop is beyond 0.3%. The previous best bit width is now used as the fixed global bit width for
the above state-of-the-art greedy method. The benefit of adding the preprocessing task is two-
fold, first it reduces the overall search-space for the method and therefore reduces the total number
of evaluations needed for convergence. Second, it produces bit-assignments which perform either
better or comparable to the other approaches in our experiments. It is referred to as -T2.

3 Models and Datasets

Most studies on compression are evaluated only in a single domain task, mostly image or audio
classification. In this paper, we compare the methods on four networks with different architectures
trained with data from diverse application domains.

VGG-like for Acoustic Event Classification We use a model for the general-purpose audio tagging
task of the 2018 edition of the Detection and Classification of Acoustic Scenes and Events (DCASE)
challenge and its dataset [2]. The model is a VGG-13 like network [5] built in Keras; It consists of 10
convolutional layers with 3 x 3 filters and increasing channel counts followed by a fully connected
layer with softmax activation.

Resnet for Image Classification For evaluating the quantization methodologies on image domain
task, we use ImageNet ILSVRC2012 dataset [11]. We use a pretrained Resnet18 network [4] from
the Pytorch model zoo.

UNet for MRI Brain Segmentation As another orthogonal domain to benchmark our approach is
the medical domain. Therefore, we use a pre-trained U-Net implemented in Pytorch and a corre-
sponding brain segmentation dataset [1].

FCN for Hand-Tool Activity Recognition The system in [7] detects activities performed in manual
labor with hand-held tools, in order to enhance quality assurance for various industrial domains,

Model UQ-TA UQ-T2 AQ-TA AQ-T2
VGG13-like 102 26 | 6484614 | 47.6% 3.82
Resnet18 139 55 | 80.6£7.53 | 74.6114.22
Auto-ML FCN 72 34| 7781683 | 31.8L10.40
UNet 74 63 | 119.04484 | 76.4+14.92

Table 1: Comparison of number of optimization steps w.r.t to performance drop of 1.0% using -TA
and -T2 for both UQ and AQ quantization. For AQ, mean and standard deviation over 5 runs is
reported.

e.g., assembly. An embedded sensor module (intertial, magnetic and audio sensors) attached to a
tool classifies activities into three classes. The authors use Auto-ML extensively. Their model is
a fully convolutional network (FCN) [16] with sequential convolutional blocks (1D convolutions
with 16 filters, dropout, batch norm, ReLU activation), distinct for each sensor type, followed by
convolutional blocks with global average pooling over concatenated inputs, and finally a soft-max.

4 Evaluation

We choose to quantize only the convolutional and fully connected layers in the scope of our work.
No explicit fine-tuning after applying the methods is done to avoid the need of having ground truth
data for further training to recover any loss of accuracy. Following this scheme, the biases are
intentionally not quantized due to their divergent behavior with respect to any quantization attempts.

We run each of our uniform quantization methods for bits ranging from 1 to 16. For adaptive
quantization the range is 1 to 8 bits resulting in cluster sizes ranging from 2 to 256. We use the
mini-batch k-means algorithm for clustering the weights with a maximum of 100 iterations and a
batch size of five million weights in the global and one million weights in the tensorwise case [12].
As the initialization of the centroids leads to an inherent randomness in the clustering algorithm, we
use results averaged over 5 runs of each adaptive quantization method and plotted with the mean
and standard deviation of the runs.

For automatic search, we start searching with 16 bits and 8 bits for all tensors in the uniform and
adaptive case, respectively. For selecting the number of bits, we use performance drop thresholds
(%) as [0.1, 0.5, 1.0, 3.0, 5.0, 7.0, 10.0, 15.0, 20.0] to cover extreme cases as well. Performance
of models is reported in terms of Top-1 accuracy for the three classification use cases and Dice
Similarity Coefficient (DSC) score for the brain segmentation task.

Our results are reported relative to the performance of the baseline model using full precision 32 bit
floating-point. In the following figures, the vertical axis is set to the fraction of the original full pre-
cision model performance (Top-1 accuracy or DSC score) which is achieved with the compressed
model. For the compression ratio, we divide the number of bytes required to represent the com-
pressed model (including codebooks and step sizes) by the original size of all tensors (in byte) as
32 bit float. All metrics are displayed as a percentage.

In Figure 1 on the following page, uniform and adaptive quantization results are shown for all four
use cases. We can see that in all cases, the adaptive quantization (AQ-) achieves higher compression
than the uniform (UQ-) equivalent. Also, the global (-G) variants are outperformed by the tensorwise
(-TF). In the tool tracking use case, the global quantization leads to the collapse of the weights of
one tensor to a single value, which severely degrades the performance. The tensorwise allocation of
different bit widths is performing better than the fixed ones in almost all cases. Only in the acoustic
case they are similar, because greedy approach also results in an approximately constant bit width
for all tensors. Our proposed method (-T2) is performing better or similar to the greedy approach
(-TA) from [8] in some cases but is never outperformed by it.

As shown in Table 1, our method requires much fewer evaluations for convergence to a solution in
terms of optimization steps. It is consistently faster than the greedy approach (-TA) from [8] by a
significant margin.

5 Conclusions

In this paper, we investigated different strategies for post-training quantization of DNNs. Models
such as Resnet18, Unet, VGG13-like network and an Auto-ML based fully convolutional network

VGG-like / Acoustic classification

100 1 w100 —0——
=X]]
75 75
]]]
5 50 50
§ n n
— 25 25
g § §
0 - 0 -
0 10 20 30 0 10 20 30
Resnet18 / Image classification
100 1 ge—& 100 g e——o
X] o] 1
~ 75 75 g
g 7 z
5 50 50
S [/ .
—_ 25 25
: P 7] T/
0 . =T 0 . —0 1
0 10 20 30 0 10 20 30
Auto-ML FCN / Tool tracking
100 1 5688 100 4 g0
- 75] 75] 7
5 50 / 50
&] M]
s 25 1 — +——+H 25 |
0 - 0 -
0 10 20 30 0 10 20 30
UNet / MRI brain segmentation
SERGE 75 %
S [R
A 50] / 50]
s 25 / 25
0 E_&m—% 0 . "!
0 10 20 30 0 10 20 30
compressed size [%) compressed size [%)]
—+— UQ-G —=— UQ-TFo UQ-TA [8] AUQ-T2 [*] AQ-G —— AQ-TF0 AQ-TA [8] - AQ-T2 [*]

Figure 1: Compression results for both UQ = uniform (left) AQ = adaptive (right) quantization. Plots
for using the global approach -G or the same number of bits per tensor -TF. The greedy approach
for adaptive number of bits per tensor -TA and the proposed two-step approach -T2.

were used. Overall, the adaptive quantization achieves better compression ratios than uniform
method. Also, it is beneficial to use tensorwise quantization in all cases.

An individual bit width per tensor could be shown to be superior in most cases, and performs similar
to using the same bit width for all tensors in the remaining ones. Even though the assignment is done
in a greedy fashion, this shows great potential. The proposed algorithm with a two-step selection of
number of bits is faster than the single-step method as it requires fewer evaluations on the calibration
set. At the same time, it is pushing the pareto front of performance over compression in many cases
and performing similarly for the others.

This work was supported by the Bavarian Ministry for Economic Affairs, Infrastructure, Transport and Tech-
nology through the Center for Analytics-Data-Applications (ADA-Center) within the framework of “BAYERN
DIGITAL IT”.

References

[1] M. Buda, A. Saha, and M. A. Mazurowski. Association of genomic subtypes of lower-grade
gliomas with shape features automatically extracted by a deep learning algorithm. Computers
in Biology and Medicine, 109:218-225, Jun 2019.

[2] E.Fonseca, M. Plakal, F. Font, D. P. W. Ellis, X. Favory, J. Pons, and X. Serra. General-purpose
tagging of freesound audio with audioset labels: Task description, dataset, and baseline. In
DCASE Workshop, Surrey, UK, 2018.

[3] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural network with
pruning, trained quantization and Huffman coding. CoRR, abs/1510.00149, 2015.

[4] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2016.

[5] T. Igbal, Q. Kong, M. D. Plumbley, and W. Wang. General-purpose audio tagging from noisy
labels using convolutional neural networks. In Detection and Classification of Acoustic Scenes
and Events 2018 Workshop, page 212-216, Woking, UK, 2018.

[6] B.Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. G. Howard, H. Adam, and D. Kalenichenko.
Quantization and training of neural networks for efficient integer-arithmetic-only inference.
CoRR, abs/1712.05877, 2017.

[7] C. Loeffler, C. Nickel, C. Sobel, D. Dzibel, J. Braat, B. Gruhler, P. Woller, N. Witt, and
C. Mutschler. Automated quality assurance for hand-held tools via embedded classification
and AutoML. In Joint European Conference on Machine Learning and Knowledge Discovery
in Databases (ECML-PKDD), Ghent, Belgium, 2020.

[8] L. Meng, N. Suda, Y. Wang, and D. Loh. Neural network optimizations for on-device Al. In
Embedded World Conference, Nuremberg, Germany, 2020.

[9] P.Nayak, D. Zhang, and S. Chai. Bit efficient quantization for deep neural networks. In EMC2
— NeurIPS Workshop, Vancouver, Canada, 2019.

[10] A. Plinge and A. Mishra. Getting Al in your pocket with deep compression. In Embedded
World Conference, Nuremberg, Germany, 2020.

[11] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. Imagenet large scale visual recogni-
tion challenge. International Journal of Computer Vision (IJCV), 115(3):211-252, 2015.

[12] D. Sculley. Web-scale k-means clustering. In 19th International Conference on World Wide
Web, pages 1177-1178, 2010.

[13] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer. Efficient processing of deep neural networks:
A tutorial and survey. Proceedings of the IEEE, 105(12):2295-2329, Dec. 2017.

[14] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han. HAQ: hardware-aware automated quantization
with mixed precision. CoRR, 1811.08886, Nov. 2018.

[15] N. Wang, J. Choi, D. Brand, C.-Y. Chen, and K. Gopalakrishnan. Training deep neural net-
works with 8-bit floating point numbers. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems
31, pages 7675-7684. Curran Associates, Inc., 2018.

[16] Z. Wang, W. Yan, and T. Oates. Time series classification from scratch with deep neural
networks: A strong baseline. In International Joint Conference on Neural Networks, page
1578-1585, Anchorage, AK, 2017.

[17] S. Wiedemann, H. Kirchhoffer, S. Matlage, P. Haase, A. Marban, T. Marinc, D. Neumann,
A. Osman, D. Marpe, H. Schwarz, T. Wiegand, and W. Samek. DeepCABAC: Context-
adaptive binary arithmetic coding for deep neural network compression. In The International
Conference on Machine Learning (ICML), May 2019.

[18] J. Xue, J. Li, and Y. Gong. Restructuring of deep neural network acoustic models with singular
value decomposition. In Interspeech, January 2013.

	1 Introduction
	2 Quantization Methods
	3 Models and Datasets
	4 Evaluation
	5 Conclusions

