FactorizeNet: Progressive Depth Factorization for
Efficient Network Architecture Exploration Under
Quantization Constraints

Stone Yun Alexander Wong
s22yun@uwaterloo.ca a28wong@uwaterloo.ca
University of Waterloo University of Waterloo
Vision and Image Processing Lab Waterloo Artificial Intelligence Institute
Abstract

Depth factorization and quantization have emerged as two of the principal strate-
gies for designing efficient deep convolutional neural network (CNN) architec-
tures tailored for low-power inference on the edge. However, there is still little
detailed understanding of how different depth factorization choices affect the final,
trained distributions of each layer in a CNN, particularly in the situation of quan-
tized weights and activations. In this study, we introduce a progressive depth fac-
torization strategy for efficient CNN architecture exploration under quantization
constraints. By algorithmically increasing the granularity of depth factorization
in a progressive manner, the proposed strategy enables a fine-grained, low-level
analysis of layer-wise distributions. Thus enabling the gain of in-depth, layer-
level insights on efficiency-accuracy tradeoffs under fixed-precision quantization.
Such a progressive depth factorization strategy also enables efficient identification
of the optimal depth-factorized macroarchitecture design (which we will refer to
here as FactorizeNet) based on the desired efficiency-accuracy requirements.

1 Introduction

Following the recent explosion in deep learning research, there has been increased attention on com-
plexity reduction strategies for deep convolutional neural networks (CNN) to enable inference on
mobile processors. Quantization [1, 2, 3], and depth factorization [4, 5, 6, 7] have quickly emerged
as two highly effective strategies for reducing the power and computational budget needed for on-
device inference. These two methods work orthogonally. Fixed point quantization enables simple,
low bit-width integer operations which are several times faster/less power than floating point (fp32)
operations. Depth factorization reduces the number of CNN parameters and multiply-accumulate
(MAC) operations. For depth factorization, we split the input channels into f groups and apply f
groups of filters independently to their respective channel groups. For a given factorization rate, f,
the number of MACs in a convolution layer goes from (1) to (2), thus reducing computation by a
factor of f. For simplicity, our equations have excluded the MAC contribution from the pointwise
convolution that typically follows the group convolution. Pointwise convolution is often used for the
dual purpose of mixing channel information and increasing channel depth.

Kx Kx HxW xCqiy x Cout (D)

Cin « Oout « f (2)

f
Depthwise separable convolution as described in MobileNets [4] has become a staple in efficient
network design. It represents the extreme end of the depth factorization spectrum with one con-
volution filter per input channel. However, perhaps we do not always need to go to the extreme.
A key tradeoff when designing CNNs for limited compute is efficiency vs. accuracy. As we scale
down our architectures, we will necessarily lose accuracy. While depthwise separable convolutions
are extremely efficient, they suffer from low data parallelism making them less suited to hardware

Kx KxHxW x

6th Workshop on Energy Efficient Machine Learning and Cognitive Computing (EMC2 2020), Online (San
Jose, California).

Regular
Convolution
(F=1)

b ise G !
> (f = input_depth)

Figure 1: The depthwise factorization spectrum. On one end, we have regular convolution, with factorization
rate of f = /. On the other end we have depthwise convolution with factorization rate of f = input-depth. For a
given layer in a CNN architecture, the optimal level of factorization could lie anywhere on this spectrum.

pth 128 |

pth 128
v

v_128_3 in_de|

pth 256
pth 256
pth 256

pth 256
i

(Conv_256_3 in_dej

pth 128

pth 64
pth 64
pth 128

pth 64
pth 64

pth 3
pth 64
pth 64

pth 128

pth 256

)

(Conv_256_2 in_de,

pth 256

out_de
out_dej
out_de
out_dej

out_de
Dense 1024_1
¥
Dense 1024_2
¥
Dense Out

MaxPool
MaxPool

out_de|
out_de|

out_de,

Conv_in, in_dej
out_de|

Conv_64_2 in_dej

Conv_64_1 in_dej
(Conv_128_1 in_dej
Conv_128_2 in_de
(Conv_256_1 in_de

‘/ Con:

Figure 2: FactorizeNet Macroarchitecture. For our progressive, fine-grained analysis we start with a simple
regular CNN and fix the macroarchitecture. We then progressively increase the level of factorization of each
block using Groupwise Separable Convolution with varying f. The very first convolution layer stays fixed.

acceleration. Also as mentioned in [7], they should not be assumed as the optimal point on the
depth-factorization-spectrum. Furthermore, with quantization emerging as essential for on-device
inference, we must consider the additional component of quantization error. In general, efficient ar-
chitectures have so few parameters that they often suffer more quantized accuracy loss compared to
higher complexity networks. However, there is still limited understanding of how different architec-
tural choices impact quantized accuracy. Given the significant investment involved with architecture
search/design, it would be beneficial to gain detailed insights on the potential quantizability of an
architecture during the design phase. Thus, helping speed-up the quantization optimization process.

We introduce a systematic, progressive depth factorization strategy for exploring the effi-
ciency/accuracy trade-offs of scaling down CNN architectures under quantization and computation
constraints. Starting with a simple, fixed macroarchitecture (see Figure 2) we algorithmically in-
crease the granularity of depth factorization in a progressive manner while analyzing the final trained
layerwise distributions of weights and activations at each step. Our proposed strategy enables a
fine-grained, low-level analysis of layer-wise distributions to gain in-depth, layer-level insights on
efficiency-accuracy tradeoffs under fixed-precision quantization. Furthermore, we can identify op-
timal depth-factorized macroarchitectures which we will refer to as FactorizeNet. While previous
studies [8, 6] have performed ablation studies on the effect of different factorization choices on
testing accuracy, they used a high-level approach and were mainly concerned with fp32 accuracy.
[9] performs layerwise analysis of the signal-to-quantization-noise-ratio (SQNR) to identify layers
that were hurting the quantized accuracy of MobileNetsv1 before retraining a modified MobileNets
architecture. Our method can be seen as expanding on this approach and going to an even lower
level, directly analyzing the distributions at each layer. Insights gained from such a fine-grained ap-
proach can help guide further exploration for quantization-based optimizations or provide a baseline
expectation of quantized accuracy trade-offs when engineers deploy their quantized model as-is.

2 Progressive Depth Factorization and Fine-Grained Layer Analysis

Consider a spectrum of depth factorization (see Figure 1) with regular convolution on one end (fac-
torization rate f = /) and depthwise convolution on the other (factorization rate f = input depth). As
we turn the knob from f = I to f = input depth for each layer or set of layers in a given macroar-
chitecture, we will observe a range of efficiency/accuracy trade-offs. Thus, a given CNN macroar-
chitecture is a search space in itself where a large range of factorization levels and combinations of
factorizations can be realized to meet given efficiency-accuracy constraints. Besides searching for
the optimal factorization configuration, we also wish to gain detailed insight on the impact of various
factorization choices on the layer-wise distributions of final trained weights and activations. This in-
formation can help us understand which factorization settings are the most amenable to quantization
as well as provide detailed insight on the response of various stages of a CNN to depth factoriza-
tion. We propose algorithmically increasing the factorization of a given CNN macroarchitecture in
a progressive manner while conducting a low-level analysis of the layerwise distributions for each
level of factorization. At each factorization step, we train the factorized CNN and track the dynamic
ranges of each layer’s weights and activations as well as their “average channel precision”. Average

f_init=2

Double
factorization rate.
f1=4

Double
factorization rate.
f2=8

8
)

2
2
2
4
4
4
8

Conv64_in
(No Factorization))
Conv64
n_groups =
Conv64
n_groups =
MaxPool
Conv128
n_groups =
Conv128
n_groups =
Conv128
n_groups =
MaxPool
Conv256
n_groups =
Conv256
n_groups =
Conv256
|__n_groups =

Figure 3: Reverse Pyramid Factorization Scheme. For this factorization scheme, we start with an initial
factorization rate, finit, and double the factorization rate each time the input depth doubles, thus preserving the
number of channels per group throughout the network. For fi,i = 64, we recover the depthwise separable CNN.

Percent Accuracy y Decrease v

Accuracy vs MACS QMSE vs MACs QCE vs MACs

os 10 15 20 25 os 10
10° MACs

15 20 25
108 MACs

Figure 4: Best viewed in colour. Far left: Accuracy vs MACs (fp32 and quint8 accuracy) under depth
factorization. Since the Dense layers are fixed, we only compare the MAC totals of the convolution layers.
Center left: QMSE vs MACs. Center right: QCE vs MACs. Far right: Percent accuracy decrease vs MACs.

channel precision is defined as (3). Channel precision in this context is the ratio between an indi-
vidual channel’s range and the range of the entire layer. [3] algorithmically maximizes the channel
precisions of each layer in a network prior to quantization. It can be seen as a measure of how well
the overall layer-wise quantization encodings represent the information in each channel. For dy-
namic ranges of activations, we randomly sample N training samples and observe the corresponding
activation responses. To reduce outlier noise, we perform percentile clipping (Eg. top and bottom
1%) and track the dynamic range and average precision of the clipped activations. As percentile
clipping has become a ubiquitous default quantization setting we feel that this method establishes
a realistic baseline of what can be expected at inference-time. Finally, there is one more set of dy-
namic ranges to observe. Batch Normalization (BatchNorm) [10] has become the best-practice in
CNNs. However, their vanilla form is not well-suited for mobile hardware processing. Best practices
for mobile inference usually involve folding the scale and variance parameters of BatchNorm into
the preceding layer’s convolution parameters as described in [1]. Therefore, we track the dynamic
range and precision of the CNN’s batchnorm-folded (BN-Fold) weights.

K
. 1 rangé€channel_i
average_precision — — —_—

rangeétensor

K ¢ <)

i=1
In this manner, we can iterate through progressively increasing factorization configurations, gaining
insights on the efficiency/accuracy trade-offs at each step as well as the final layerwise distributions.
Besides enabling analysis of depth factorization, this fine-grained approach is applicable to help-
ing us understand the impact of other architecture choices such as skip/residual connections as well
as training hyperparameters such as weight initializations, learning rate schedules etc. Progressive
Depth Factorization provides a general framework not only for systematically understanding the
efficiency/accuracy trade-offs of factorization, but also for finding the optimal factorization configu-
ration. As there are many directions that can be taken through the “Progressive Depth Factorization
space”, our method can be merged with automated search methods such as GenSynth [11] to trace
out various paths through the space, especially for increasingly complex architectures.

3 Experiment

We start with a VGG-like macroarchitecture (see Figure 2) trained and tested on CIFAR-10. As we
begin to factorize, the regular convolution layers (except for the first layer, which stays constant) are
replaced with “Groupwise Separable” Convolution where factorization rate f is a programmable pa-
rameter. We refer to the resulting set of architectures as FactorizeNet. The groupwise separable con-
volution follows the structure of depthwise separable convolutions [4]. Ie. GroupConv-BatchNorm-
Relu-PointwiseConv. When f = input depth, we recover depthwise separable convolutions. Follow-
ing best practices, we always use a Conv-BatchNorm-Relu op-pattern. We demonstrate two pro-
gressively increasing factorization methods. The first is a uniform factorization configuration. Ie.
A single factorization rate is applied to every Groupwise Separable Conv layer in the network. We
progressively double this factorization rate on each step through the search space. We train networks
with uniform factorizations of f = 2, 4, 8, 16. These networks are denoted FactorizeNet-f; where j is

Weight Ranges Per Layer

Bo R p .L w g 5 7 T
Layer 4

Figure 5: Left: Weights ranges per layer. Center: BN-Fold weights ranges. Right: Activations ranges.
Note: Due to lack of space, we did not show the average precisions. However, these are still valuable statistics.

Welghts Ranges Per Layer BN-Fold Weights Ranges Per Layer

o1d weights Precisions Per Layer

Layer [

Figure 6: Comparing DWS_Conv, FactorizeNet-fis, and FactorizeNet-fy, Far left: Weights ranges. Center
left: BN-Fold weights ranges. Center right: Activations ranges. Far right: BN-Fold weights precisions.

uniform factorization rate (e.g., FactorizeNet-f; is the network with a uniform factorization rate of 2).
The second approach is to progressively double the factorization rate as we go deeper into the CNN
in a Reverse Pyramid configuration (see Figure 3 for details). For Reverse Pyramid factorization,
we train networks with f;,;; = 2, 4. These networks are denoted FactorizeNet-fi,jx where k is initial
factorization rate (eg. FactorizeNet-fi,;; is the network with reverse pyramid factorization and initial
factorization rate of 2). We also train FactorizeNet with regular convolution and depthwise separable
convolution in place of Groupwise Separable Conv (denoted Regular_Conv and DWS_Conv). Each
network is trained from scratch for 200 epochs of SGD with Momentum = 0.9, batch-size = 128,
and Glorot Uniform initializer [12] for all layers. Initial learning rate is 0.01 and we scale it by 0.1
at the 75th, 120th, and 170th epochs. For the activation range tracking we perform top/bottom 1%
clipping computed on a random sample of 1024 training samples. Basic data augmentation includes
vertical/horizontal shift, zoom, vertical/horizontal flip and rotation. We use Tensorflow for train-
ing and quantizing the weights and activations to quint8 format. Basic top/bottom 1% percentile
clipping is used for activation quantization as it is a common, low-overhead method.

For each network we observe the efficiency-accuracy trade-offs with respect to 4 quantities: fp32
accuracy, quantized 8-bit (quint8) accuracy, quantized mean-squared error (QMSE), and quantized
crossentropy (QCE). QMSE refers to the MSE between the fp32 network outputs and the quint8
network outputs after dequantization. Similarly, QCE measures the cross entropy between the fp32
network outputs and the dequantized quint8 network outputs. While QMSE directly measures the
difference in network output, QCE quantifies the difference in distribution of the network outputs.
For classification, QCE can sometimes be more reflective of differences in behaviour. Additionally,
we also observe the relative accuracy degradation (change in accuracy divided by fp32 accuracy) of
each network after quantization. Figure 4 shows these quantities vs MAC-count.

4 Discussion

From Figure 4, we have a high-level picture of the efficiency/accuracy trade-offs. Interestingly,
FactorizeNet-fi,i» (104.3 MMACs, 86.01% fp32 acc, 80.31% quint8 acc) has less MACs than
FactorizeNet-f, (153.8 MMACsS, 86.54% fp32 acc, 80.05% quint8 acc) but similar accuracy. Fur-
thermore, if targeting fp32 environments, FactorizeNet-fi,i» would offer over 2.5x MAC reduction
from Regular_Conv (266.0 MMAC:s, 88.37% fp32 acc, 85.60% quint8 acc) with a very small accu-
racy reduction. When analyzing quantized accuracy, some interesting anomalies emerge. Specif-
ically the sharp drop in accuracy for FactorizeNet-f}¢ (14.8% relative accuracy drop). Also worth
noting is that while most of the other models have higher quantized accuracy, DWS_Conv experi-
ences a noticeably smaller relative decrease in quantized accuracy (4.21% vs. 5.88% - 7.53%). This
may be due to the much smaller increase in range of the BN-Fold weights in its first layer.

To get a better understanding of the factors contributing to the degradation in FactorizeNet-fi¢, we
move to our low-level analysis. Figure 5 shows the dynamic ranges of each layer. This low-level
information gives us a direct look at the underlying distributions and how they interact with quanti-

zation noise. For example, besides generally smaller weights ranges (both convolution weights and
batchnorm-folded weights), Regular_Conv activations ranges are also noticeably lower. This begins
to explain why Regular_Conv is so robust to quantization (3.13% relative accuracy loss). Going
back to FactorizeNet-f}4, the increased BN-Fold weights ranges early in the network may begin to
explain why this CNN experienced a sharp drop in quantized accuracy. Furthermore, if we analyze
the average precision of the BN-Fold weights in FactorizeNet-f| we see a combination of large
range and low precision in the early, low-level feature extraction layers. Interestingly, the BN-Fold
weights in FactorizeNet-f, show an even worse average precision in the first layer. However, the
precision of BN-Fold weights in FactorizeNet-f, is higher on average and hints at a more represen-
tative projection of the network’s layers from their continuous distribution into a discretized space.
Furthermore, we observe a generally lower range of activations for Factorizenet-f,. See Figure 6
for detailed comparison. Zooming back out to the inter-network trends, we can see from the BN-
Fold weights ranges that there may be a significant loss of information in the early low-level feature
extraction stages. It would be interesting to see how these distributions change if we do not use
BatchNorm for the first layer since the pre-BN-Fold weights have a much smaller range. While
it is intractable to pinpoint any single reason for the observed quantized behaviour, our layer-level
analysis reveals a rich set of interconnected factors contributing to each network’s system dynamics.
We could even further expand our analysis to use more rigorous, yet scalable statistical methods for
layerwise analysis. From these initial analyses, we see that a fine-grained, systematic analysis can
yield detailed insights to help further guide our design process.

5 Conclusion

We introduce a systematic, progressive depth factorization strategy coupled with a fine-grained lay-
erwise analysis for exploring the efficiency/accuracy trade-offs of factorizing CNN architectures. In
doing so, we can gain detailed insights on the impact of depth factorization on final floating point
and quantized accuracy and also identify the optimal factorization configuration (ie. FactorizeNet).
Future work includes using more sophisticated algorithms for increasing factorization, investigating
activation sparsity under factorization, and factorizing more complex blocks/architectures.

References

[1] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. G. Howard, H. Adam, and D. Kalenichenko,
“Quantization and training of neural networks for efficient integer-arithmetic-only inference,” CoRR, vol.
abs/1712.05877, 2017.

[2] S.R. Jain, A. Gural, M. Wu, and C. Dick, “Trained uniform quantization for accurate and efficient neural
network inference on fixed-point hardware,” CoRR, vol. abs/1903.08066, 2019.

[3] M. Nagel, M. van Baalen, T. Blankevoort, and M. Welling, “Data-free quantization through weight equal-
ization and bias correction,” CoRR, vol. abs/1906.04721, 2019.

[4] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam,
“Mobilenets: Efficient convolutional neural networks for mobile vision applications,” CoRR, vol.
abs/1704.04861, 2017.

[5] X.Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely efficient convolutional neural network
for mobile devices,” CoRR, vol. abs/1707.01083, 2017.

[6] S. Xie, R. B. Girshick, P. Dollar, Z. Tu, and K. He, “Aggregated residual transformations for deep neural
networks,” CoRR, vol. abs/1611.05431, 2016.

[7] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 1251-1258.

[8] G. Huang, S. Liu, L. van der Maaten, and K. Q. Weinberger, “Condensenet: An efficient densenet using
learned group convolutions,” CoRR, vol. abs/1711.09224, 2017.

[9] T. Sheng, C. Feng, S. Zhuo, X. Zhang, L. Shen, and M. Aleksic, “A quantization-friendly separable
convolution for mobilenets,” in 2018 st Workshop on Energy Efficient Machine Learning and Cognitive
Computing for Embedded Applications (EMC2), 2018, pp. 14-18.

[10] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal
covariate shift,” CoRR, vol. abs/1502.03167, 2015.

[11] A. Wong, M. Javad Shafiee, B. Chwyl, and F. Li, “Gensynth: a generative synthesis approach to learning
generative machines for generate efficient neural networks,” Electronics Letters, vol. 55, no. 18, pp. 986—
989, 2019.

[12] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks,” ser.
Proceedings of Machine Learning Research, Y. W. Teh and M. Titterington, Eds., vol. 9. Chia Laguna
Resort, Sardinia, Italy: JMLR Workshop and Conference Proceedings, 13—15 May 2010, pp. 249-256.

