
Auto Hessian Aware Channel-wise Quantization of
Neural Networks

Xu Qian
Intel Asia Research Center
xu.qian@intel.com

Victor Li
Intel Asia Research Center
victor.li@intel.com

Crews Darren S
Intel IOTG

darren.s.crews@intel.com

Abstract

Second-order information has proven to be very effective in determining the redun-
dancy of neural network weights and activations. Recent paper proposes to use
the Hessian traces of weights and activations for mixed-precision quantization and
achieves state-of-the-art results. However, prior works only focus on selecting bits
for each layer while the redundancy of different channels within a layer also differ
a lot. This is mainly because the complexity of determining bits for each channel
is too high for original methods. Here, we introduce Auto Hessian Aware Channel-
wise Quantization (AHCQ). AHCQ uses the Hessian traces to determine the relative
sensitivity order of different channels of activations and weights. What’s more,
AHCQ proposes to use deep Reinforcement learning (DRL) Deep Deterministic
Policy Gradient (DDPG)-based agent to find the optimal fractions of channels to
be quantized to different quantization bits and assign bits to channels according
to the order of Hessian traces. The agent training time of AHCQ is much shorter
compared with traditional AutoML based mix-precision methods since we only
need to search the fractions of different quantization bits. Comparing AHCQ with
state-of-the-art shows that we can achieve better results for multiple networks.

1 Introduction

In order to increase inference speed and energy efficiency, weights and activations of neural networks
need to be quantized to low precision(3). Prior works use the same QBN(quantization bit number)
for all layers(1)(4)(7), which would introduce a huge decrease in accuracy as bit goes down.

A possible solution here is to use mixed-precision quantization, where higher precision is used for
more sensitive layers of the network, and lower precision for less sensitive layers. However, the
search space of choosing a QBN for each layer is too large for exhaustive search.

HAWQ-V2(2) finds that second order information, like Hessian traces of different layers are great
indicators of the layers’ sensitivity to quantization error. HAWQ-V2 uses the Hessian traces as
criterion for layers’ sensitivity and hugely decreased the complexity of the problem. HAWQ-V2 is
able to outperform most model compression methods.

However, HAWQ-V2 only focuses on selecting QBNs for different layers, while the redundancy
of channels within a layer also differs a lot(5). A more fine-grained method would be using mixed-
precision for different channels. But the search space is much larger for channel-wise mixed precision
problem. Traditional methods like HAWQ-V2 are unable to solve this kind of problem.

A recent paper AutoQ(5), proposes to use a hierarchical-DRL-based agent to solve this problem.
Based on the insights of HAQ(6), AutoQ automatically searches a QBN for each weight kernel
and choose a QBN for each activation layer. However, the state number is quite huge for AutoQ
and the agent requires a lot of training time to converge. Also, the author did not consider using
mixed-precision for different channels of activations.

6th Workshop on Energy Efficient Machine Learning and Cognitive Computing (EMC2 2020), Online (San Jose,
California).



2 Method

Hessian trace is a great indicator of a neural network block’s sensitivity to quantization error(2). For
channel-wise mixed-precision quantization, using the Hessian traces can significantly reduce the
search space, since a channel with a higher Hessian trace cannot be assigned lower bits, as compared
to another channel with a smaller Hessian trace. Based on that, we are able to sort all channels
according to their average Hessian traces. Then the mixed-precision problem can be reduced to an
integer partition problem, namely, to partition the sorted channels into different groups of QBNs.
However, the search space is still huge after Hessian trace analysis because there are too many
channels. For channel-wise mixed precision quantization on ResNet50 where QBNs are chosen in {2,
3, 4, 5, 6, 7, 8}, the search space is as large as

(
7

27000

)
≈ 2.1× 1027.

We model this task as a DRL problem. We use the actor-critic model with DDPG agent to give the
action: fractions of channels to be quantized to different QBNs. With the prior knowledge of the
Hessian traces, the states of the agent only contain the fractions of different bits, in our experiments,
fractions of {2, 3, 4, 5, 6, 7, 8}. This is much smaller compared with traditional AutoML based
quantization methods where each layer or channel has an individual state like HAQ and AutoQ.

This section is organized as follows: first we will introduce the method to generate the traces of
different channels and analyze the traces of ResNet18 as an example. Then we will discuss in details
about the DRL method to determine the fractions of channels to be quantized to different QBNs.

2.1 Channel-wise trace weighted quantization

Computing the Hessian traces may seem a prohibitive task, as we do not have direct access to the
elements of the Hessian matrix. Hence in HAWQ-V2, the author uses Hutchinson algorithm(2) to
estimate the Hessian trace of a neural network layer.

Based on that, we introduce the masked Hutchinson algorithm to calculate the traces for different
weight channels:

Tr(Hj
w) ≈

1

m

m∑
i=1

zji
T
Hwz

j
i = TrEst(H

j
w)

zji = Maskj ∗ zi, j ∈ [0, output channels]

(1)

where zji is the masked random vector for the jth channel of a given layer. Hj
w is the weight Hessian

matrix of jth channel. The jth channel of Maskj is set to 1 while the others set to 0.

Similarly, we can get the average activation trace of the jth channel using:

Tr(Hj
a) ≈

1

N

N∑
i=1

zji
T
Ha(xi)z

j
i

zji = Maskj ∗ zi, j ∈ [0, output channels]

(2)

where Hj
a is the activation Hessian matrix of jth channel.

(a) (b)
Figure 1: Average Hessian traces of different blocks in ResNet18 on ImageNet (a) Average trace of
different weight channels; (b) Average trace of different activation channels;

2



We incorporate the above approach and compute the average Hessian traces for different layers
and channels of ResNet18. As shown in Figure 1, there is a significant difference between average
Hessian traces for different channels. This conclusion works both for weights and activations.

(a) (b)
Figure 2: Hessian trace analysis (a) Sorted average Hessian traces in descending order; (b) The loss
landscape of channels with min and max trace

We sort the weight Hessian traces of different channels of ResNet18 in descending order as Figure
2(a) shows. The difference of different channels can be as large as 103.

To better illustrate this, we also plot the loss landscape of ResNet18 by adding perturbation to
the pre-trained model as Figure 2(b). It is clear that different channels have significantly different
“sharpness”. For the 30th channel of the second layer, the average trace is about 4.2 × 10−1. The
loss changes significantly as we add perturbation to this channel, so we need to use higher bits for
this channel. And for the 384th channel of the 18th layer, the average trace is about 1.5× 10−4. The
loss landscape is relatively flat so we can quantize this channel more aggressively.

2.2 Quantization bit allocation

However, a major drawback for Hessian trace analysis is that it does not provide the specific bit
precision setting for different channels. For example, in Figure 1, it is clear that some channels have
significant higher average traces than the others. Although it is obvious that we should allocate higher
QBNs for these channels to increase accuracy, we still cannot get a specific bit precision setting.

Channels with higher traces should be assigned higher bits. The only parameters missing are the
fractions of channels to be quantized to different QBNs. In this paper, we model this task as a
DRL problem as Figure 3 shows. We use the actor-critic model with DDPG agent to give the
action: fractions of channels to be quantized to different QBNs. Then we allocate the bits to the
channels according to the sorted Hessian traces. In our experiments, we use compression ratio as
constraint and accuracy as target to search for the optimal fractions. Below describes the details of
our implementation.

2.2.1 DDPG agent

In the previous section, we have calculated the Hessian traces of different channels. Leverag-
ing the sorted Hessian traces, we iteratively search the fractions of channels to be quantized to
{2, 3, 4, 5, 6, 7, 8} bits.

Actor

Critic

Fraction of 

8bit

Fraction of 

7bit

Fraction of 

3bit

Fraction of 

2bit

...

Policy

Action

State

Reward

Layer1 Channel30

…

Layer1 Channel2
…

Layer1 Channel3
…

Layer18 Channel 384

…

…

Hessian Trace in 

descending order

8 7 3 8…

Layer1 Channel1

Layer0 Channel39 Layer0 weights

Layer1 weights

…

LayerN weights

Accuracy 

Reward
Feedback

Quantized Model

…

Figure 3: An overview of our framework. We leverage DRL to automatically search the fractions of
different bits and allocate the bits to different channels according to the sorted Hessian traces

3



Method w-bits a-bits Top-1 Top-1 drop W-Comp Size(MB)
Baseline NA NA 76.45 NA 1.00x 97.8
HAQ 3.03 MP 75.30 0.85 10.57x 9.22
HAWQ-V2 2.61 4MP 75.76 1.63 12.24x 7.99
AutoQ 2.21 3.07 72.47 2.33 14.48x 6.75
AHCQ 2.61 4 76.65 -0.2 12.24x 7.99
AHCQ 2.21 3.07 75.57 0.88 14.48x 6.75

Table 1: Results of ResNet50 on ImageNet. We abbreviate average QBN used for weights as “w-bits,”
activations as “a-bits,” top-1 accuracy as “Top-1,” and weight compression ratio as “W-Comp.” Here
“MP” refers to mixed-precision quantization. "Top-1 drop," column is added for a fair comparison
because different methods have different baseline.

Method w-bits a-bits Top-1 Top-1 drop W-Comp Size(MB)
Baseline NA NA 70.47 NA 1.00x 44.65
HAQ 3.37 3.65 67.5 2.4 9.49x 4.71
AutoQ 2.19 3.02 67.4 2.5 14.61x 3.06
AHCQ 2.19 3.02 69.02 1.45 14.61x 3.06

Table 2: Quantization results of ResNet18 on ImageNet.

Observation (State Space). In this process, there is no need for extra information from the network
because it is implied in the sorted Hessian trace list. So the state space is relatively simple, in this
paper we introduce a 5 dimension feature vector Ok as our observation:

[k, nremains, si, ei, ak−1]
where k is the channel index, si and ei are the starting index and ending index of the last bit in the
sorted Hessian trace list, nremains is the number of remaining parameters, and ak−1 is the action
from the last step. For each dimension in the observation vector Ok, we normalize it into [0, 1] to
make them in the same scale.

Action Space. Due to the fact that all fractions need to sum up to exact 100%, the Markov Decision
Process in this paper is as follows: we first search the fraction of 2-bit and quantize corresponding
channels according to the sorted Hessian traces. Then search the fraction of 3-bit in the remaining
channels and quantize these channels accordingly. Then we repeat this operation for 4-bit to 7-bit.
Finally we quantize the remaining channels to 8-bit.

Reward Function. After quantization, we retrain the quantized model for one more epoch to recover
the accuracy. As we have already imposed the resource constraints by limiting the action space, we
define our reward function to be exactly the retraining accuracy top-1.

Quantization and fine-tuning. We follow a two step quantization method. In the first step, we use
DDPG agent to search for the optimal policy for activation quantization and quantize the activations
accordingly. In the second step, we use the fine-tuned model from step1 to search for the optimal
policy for weight quantization. Then we use the best policy to add weights quantization to the
fine-tuned model from step1.

3 Experiments

To evaluate AHCQ, we select several CNN models including ResNet-18, ResNet-50 and Mo-
bileNetV2. The CNN models are trained on ImageNet including 1.26M training images and tested on
50K test images spanning 1K categories of objects.

Method w-bits a-bits Top-1 Top-1 drop W-Comp Size(MB)
Baseline NA NA 71.8 NA 1.00x 13.51
HAQ 3.21 3.92 68.66 2.44 9.97x 1.36
AutoQ 2.26 3.13 68.68 2.42 14.16x 0.95
AHCQ 2.26 3.13 69.85 1.95 14.16x 0.95

Table 3: Quantization results of MobilenetV2 on ImageNet.

4



3.1 Compare with State Of The Art

As shown in Table 1, we apply AHCQ on ResNet50 and compare the accuracy to state-of-the-art
mixed precision methods. It is clear that AHCQ achieves state-of-the-art results compared with
multiple methods. At 2.61 average weight QBN and 4 average activation QBN, AHCQ is even able
to increase the baseline accuracy by 0.2%.

We also experiment with ResNet18. As in Table 2, we compared AHCQ with AutoQ and HAQ.
AHCQ is able to achieve about 1.6% higher accuracy than AutoQ at the same compression ratio. Our
Top-1 drop is about 1% smaller considering AutoQ uses a lower baseline.

We also tried smaller networks like MobilenetV2. As in Table 3, AHCQ is able to achieve about
1.2% better accuracy than AutoQ at the same compression ratio. The Top-1 drop is also about 0.5%
smaller.

Figure 4: Agent training wall time for AHCQ vs AutoQ and HAWQ-V2

3.2 AutoML training efficiency.

One major drawback for AutoML based bit selection is that it takes a lot of time to train the agents.
This is because the state space of previous methods (HAQ, AutoQ) is quite huge. While in AHCQ, the
states only consist of the fractions of channels to be quantized to different QBNs ({2, 3, 4, 5, 6, 7, 8}).
As a result, our agent is able to converge in a relative short time. As Figure 4 shows, the training time
for AHCQ is much less compared with AutoQ and HAQ. For Resnet18, AHCQ converges after 2
hours’ training with 4 Nvidia V100 GPUs, which is about 1/4 of HAQ and 1/20 of AutoQ.

4 Conclusion

In this paper, we propose Reinforcement learning based Hessian aware Channel-Wise quantization
(AHCQ). AHCQ first use the masked Huntchison algorithm to calculate the average Hessian traces of
weight and activation channels. Then AHCQ sorts the channels and uses DDPG agent to automatically
select the fractions of different QBNs. Particularly, the training efficiency of AHCQ improves a lot
compared with traditional AutoML based quantization methods. Experiments on multiple networks
show the effectiveness of AHCQ.

References
[1] J. Choi, Z. Wang, S. Venkataramani, P. I.-J. Chuang, V. Srinivasan, and K. Gopalakrishnan. Pact:

Parameterized clipping activation for quantized neural networks, 2018.
[2] Z. Dong, Z. Yao, Y. Cai, D. Arfeen, A. Gholami, M. W. Mahoney, and K. Keutzer. Hawq-v2:

Hessian aware trace-weighted quantization of neural networks, 2019.
[3] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural networks with

pruning, trained quantization and huffman coding, 2015.
[4] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and D. Kalenichenko.

Quantization and training of neural networks for efficient integer-arithmetic-only inference, 2017.
[5] Q. Lou, F. Guo, L. Liu, M. Kim, and L. Jiang. Autoq: Automated kernel-wise neural network

quantization, 2019.
[6] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han. Haq: Hardware-aware automated quantization with

mixed precision, 2018.
[7] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou. Dorefa-net: Training low bitwidth

convolutional neural networks with low bitwidth gradients, 2016.

5


	Introduction
	Method
	Channel-wise trace weighted quantization
	Quantization bit allocation
	DDPG agent


	Experiments
	Compare with State Of The Art
	AutoML training efficiency.

	Conclusion

