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Abstract

While significant advances in deep learning has resulted in state-of-the-art perfor-
mance across a large number of complex visual perception tasks, the widespread
deployment of deep neural networks for TinyML applications involving on-device,
low-power image recognition remains a big challenge given the complexity of
deep neural networks. In this study, we introduce AttendNets, low-precision,
highly compact deep neural networks tailored for on-device image recognition.
AttendNets possess deep self-attention architectures based on visual attention
condensers, which extends on the recently introduced stand-alone attention con-
densers to improve spatial-channel selective attention. Furthermore, AttendNets
have unique machine-designed macroarchitecture and microarchitecture designs
achieved via a machine-driven design exploration strategy. Experimental results on
ImageNet50 benchmark dataset for the task of on-device image recognition showed
that AttendNets have significantly lower architectural and computational complex-
ity when compared to several deep neural networks in research literature designed
for efficiency while achieving highest accuracies (with the smallest AttendNet
achieving ∼7.2% higher accuracy, while requiring ∼3× fewer multiply-add opera-
tions, ∼4.17× fewer parameters, and ∼16.7× lower weight memory requirements
than MobileNet-V1). Based on these promising results, AttendNets illustrate the
effectiveness of visual attention condensers as building blocks for enabling various
on-device visual perception tasks for TinyML applications.

1 Introduction
Deep learning [11] has resulted in significant breakthroughs in the area of computer vision, with state-
of-the-art performance in a wide range of visual perception tasks such as image recognition [6, 9],
object detection [4], and segmentation [1, 7]. Despite these breakthroughs, the widespread deployment
of deep neural networks for tiny machine learning (TinyML) applications involving on-device
visual perception on low-cost, low-power devices remains a major challenge given the increasing
complexities of deep neural networks. Motivated by the tremendous potential of deep learning
empowering TinyML applications and inspired to tackle the aforementioned complexity challenge,
there has been significant effort in recent years on the creation of highly efficient deep neural networks
for edge scenarios. These efforts in efficient deep learning have yielded a number of effective
strategies, and can be typically grouped into two main categories: i) model compression [10, 5],
and ii) efficient architecture design [8, 13, 12, 6]. In the realm of efficient architecture design, a
number of architecture design patterns have been introduced leveraging bottlenecks [6, 13], factorized
convolutions [8, 13], pointwise group convolutions and channel shuffling [12]. One particular area that
has not been well explored and is ripe for innovation is to leverage the concept of self-attention [14, 9],
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Figure 1: A visual attention condenser (VAC) is a self-attention mechanism consisting of a down-
mixing layer, M(V ), condensation layer C(V ′), an embedding structure E(Q), an expansion layer
X(K), a selective attention mechanism F (V ′, A, S), and an up-mixing layer M ′(V ′′).
seen as one of the recent big breakthroughs in deep learning, for the purpose of building highly
efficient deep neural network architectures.

In this study, we introduce AttendNets, low-precision, highly compact deep neural networks tailored
for on-device image recognition. AttendNets possess deep self-attention architectures based on visual
attention condensers, which extends on the recently introduced stand-alone attention condensers
to improve spatial-channel selective attention. AttendNets have unique macroarchitecture and
microarchitecture designs achieved via a machine-driven design exploration strategy, making them
particularly tailored for TinyML applications on edge devices.

2 Method

2.1 Visual Attention Condensers

The first concept we leverage to construct the proposed AttendNets is the concept of visual attention
condensers. The concept of self-attention in deep learning has led to significant advances in recent
years [14, 9], particularly with the advent of Transformers [14] that has reshaped the landscape
of machine learning for natural language processing. It can be said that much of research on self-
attention in deep learning has focused on improving accuracy, and this has had a heavy influence
over the design of self-attention mechanisms. Motivated to explore the design of self-attention
mechanisms in the direction efficiency instead of accuracy, Wong et al. [15] introduce the concept
of attention condensers as a stand-alone building block for deep neural networks geared around
condensed self-attention. They were able to demonstrate the efficacy of attention condensers on the
task of limited-vocabulary speech recognition, achieving state-of-the-art in network efficiency.

Inspired by the promise of attention condensers, we extend upon the attention condenser design to
further improve their efficiency and effectiveness for tackling visual perception tasks such as image
recognition. We take inspiration from the observation that deep neural network architectures for
tackling complex visual perception tasks often have very high channel dimensionality. As such,
while the existing attention condenser design can still achieve significant reductions on network
complexity under such scenarios, we hypothesize that further complexity reductions can be gained
through better handling of the high channel dimensionality when learning the condensed embedding
of joint spatial-channel activation relationships. As such, we introduce an extended visual attention
condenser design where we introduce a pair of learned channel mixing layers that further reduces
spatial-channel embedding dimensionality while preserving selective attention performance.

An overview of the proposed visual attention condenser (VAC) is shown in Figure 1. More specifi-
cally, a visual attention condenser is a self-attention mechanism consisting of a down-mixing layer,
M(V ), condensation layer C(V ′), an embedding structure E(Q), an expansion layer X(K), a
selective attention mechanism F (V ′, A, S), and an up-mixing layer M ′(V ′′). The down-mixing
layer V ′ = M(V ) learns and produces a projection of the input activations V to a reduced channel
dimensionality to obtain V ′. The condensation layer (i.e., Q = C(V ′)) condenses V ′ for reduced
dimensionality to Q with an emphasis on strong activation proximity to better promote relevant region
of interest despite the condensed nature of the spatial-channel representation. An embedding structure
(i.e., K = E(Q)) then learns and produces a condensed embedding K from Q characterizing joint
spatial-channel activation relationships. An expansion layer (i.e., A = X(K)) then projects the con-
densed embedding K to an increased dimensionality to produce self-attention values A emphasizing
regions of interest in the same domain as V ′. The output V ′′ is a product of V ′, self-attention values
A, and scale S via selective attention (i.e., V ′′ = F (V ′, A, S)). Finally, the up-mixing layer M ′(V ′′)
learns and prodcues a projection of V ′′ to a higher channel dimensionality for final output V ′′′ that
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Figure 2: AttendNet architectures for image recognition. The number in each module represents the
number of channels. The number in each fully-connected layer represents the number of synapses.

has the same channel dimensionality as the input activation V . Overall, through the introduction of
the pair of learned mixing layers into the attention condenser design, a better balance between joint
spatial-channel embedding dimensionality and selective attention performance can be achieved for
building highly efficient deep neural networks for tackling visual perception problems on the edge.

2.2 Machine-driven Design Exploration
The second concept we leverage to construct the proposed AttendNets is the concept of machine-
driven design exploration. In this study, we leverage a generative synthesis [17] design exploration
approach to automate the process of generating the macroarchitecture and microarchitecture designs
of the final AttendNet network architectures such that they are tailored specifically for the purpose of
on-device image recognition in computational and memory constrained scenarios such as on low-cost,
low-power edge devices, with an optimal balance between image recognition accuracy and network
efficiency. As the goal for the proposed AttendNets is to achieve a strong balance between accuracy
and network efficiency for the task of on-device image recognition, we imposed two key constraints
during the machine-driven design exploration process: i) the top-1 validation accuracy is greater than
or equal to 71% on the ImageNet50 edge vision benchmark dataset introduced by Fang et al. [3] for
evaluating performance of deep neural networks for on-device vision applications, and ii) 8-bit weight
precision. First, a top-1 validation accuracy constraint of 71% validation accuracy was chosen to
make AttendNets comparable in accuracy to a state-of-the-art efficient deep neural network proposed
in [16] for on-device image recognition. Second, an 8-bit weight precision constraint was chosen to
account for the memory constraints of low-cost edge devices.

Taking advantage of the fact that the generative synthesis process is iterative and produces a number
of successive generators [17], we leverage two of the constructed generators at different stages to
automatically generate two compact deep image recognition networks (AttendNet-A and AttendNet-
B) with different tradeoffs between image recognition accuracy and network efficiency. Finally, to
realize the concept of visual attention condensers in a way that enables the learning of condensed
embeddings characterizing joint spatial-channel activation relationships in an efficient yet effective
manner, we leveraged max pooling, a lightweight two-layer neural network (grouped then pointwise
convolution), unpooling, and pointwise convolution for the condensation layer C(V ′), the embedding
structure E(Q), the expansion layer X(K), and the mixing layers M(V ) and M ′(V ′′), respectively,
within a visual attention condenser.

3 AttendNet Architecture Designs

Figure 2 shows the architecture designs of the two AttendNets, produced via machine-driven design
exploration that incorporates visual attention condensers in its design considerations. A number of
interesting observations can be made about the AttendNet architecture designs. First, the AttendNet
architecture designs are comprised of a mix of consecutive stand-alone visual attention condensers
performing consecutive visual selective attention and projection-expansion-projection-expansion
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Table 1: Top-1 accuracy, number of parameters, and number of multiply-add operations of AttendNets
in comparison to four efficient networks (MobileNet-V1 [8], MobileNet-V2 [13], AttoNet-A [16],
AttoNet-B [16]). Best results are in bold. Results for AttendNets based on 8-bit low precision
weights, while results for other tested networks based on 32-bit full precision weights

Model Top-1 Accuracy Params Mult-Adds
MobileNet-V1 64.5% 3260K 567.5M
MobileNet-V2 68.7% 2290K 299.7M

AttoNet-A 73.0% 2970K 424.8M
AttoNet-B 71.1% 1870K 277.5M

AttendNet-A 73.2% 1386K 276.8M
AttendNet-B 71.7% 782K 191.3M

(PEPE) modules for efficient feature representation. The PEPE module was discovered by the
machine-driven exploration strategy and comprises of a projection layer that reduces dimensionality
via pointwise convolution, an expansion layer that increases dimensionality efficiently via depthwise
convolution, a projection layer that reduces dimensionality again via pointwise convolution, and
finally an expansion layer that increases dimensionality again via pointwise convolution.

Second, it can be observed that there is a heavy use of visual attention condensers early on within the
AttendNet architecture by the machine-driven design exploration strategy, while relying on PEPE
modules later in the network architecture. This interesting design choice by the machine-driven
design exploration strategy may be a result of selective attention being more important earlier on
low-level to medium-level visual abstraction for image recognition to enable better focus on irrelevant
regions of interest critical to decision-making within a complex scene.

Third and finally, it can be observed that the AttendNet network architectures exhibits high architec-
tural diversity both at the macroarchitecture level and microarchitecture level. For example, at the
macroarchitecture level, there is a heterogeneous mix of visual attention condensers, PEPE modules,
spatial and pointwise convolutions, and fully-connected layers. At the microarchitecture level, the
visual attention condensers and PEPE modules have a diversity of microarchitecture designs as seen
by the differences in channel configurations. This level of architectural diversity is a result of the
machine-driven design exploration process, which has the benefit of determining the best architecture
design at a fine grained level to achieve a strong balance of network efficiency and accuracy for
the specific task at hand. Based on these three interesting observations, it can be seen the proposed
AttendNet network architectures is highly tailored for on-device image recognition for the edge,
and also shows the merits of leveraging both visual attention condensers and machine-driven design
exploration for achieving such highly efficient, high-performance deep neural networks.

4 Results and Discussion
In this study, we evaluate the efficacy of the proposed low-precision AttendNets on the task of
image recognition to empirically study the balance between accuracy and network efficiency. More
specifically, we leverage ImageNet50, a benchmark dataset that was introduced by Fang et al. [3] for
evaluating performance of deep neural networks for on-device vision applications on the edge derived
from the popular ImageNet [2] dataset. To quantify accuracy and network efficiency, we computed
the following performance metrics: i) top-1 accuracy, ii) the number of parameters (to quantify
architectural complexity), and iii) the number of multiply-add operations (to quantify computational
complexity). For comparative purposes, the same performance metrics were also evaluated on
MobileNet-V1 [8], MobileNet-V2 [13], AttoNet-A [16], and AttoNet-B [16]), four highly efficient
deep image recognition networks that were all designed for on-device image recognition purposes.

Table 1 shows the top-1 accuracy, the number of parameters, and the number of multiply-add
operations of the AttendNets alongside the four other tested efficient deep image recognition networks.
It can be clearly observed that the proposed AttendNets achieved a significantly better balance between
accuracies and architectural and computational complexity when compared to the other tested efficient
deep neural networks. In terms of lowest architectural and computational complexity, AttendNet-B
achieved significantly higher accuracy compared to MobileNet-V1 (∼7.2% higher) but requires
∼4.17× fewer parameters, ∼16.7× lower weight memory requirements, and ∼3× fewer multiply-
add operations than MobileNet-V1. Compared to similarly-accurate state-of-the-art AttoNet-B,
AttendNet-B achieved ∼0.6% higher accuracy but requires ∼2.4× fewer parameters, ∼9.6× lower
weight memory requirements, and ∼1.45× fewer multiply-add operations. In terms of the highest
top-1 accuracy, AttendNet-A achieved significantly higher accuracy compared to MobileNet-V1

4



and MobileNet-V2 (∼8.7% higher and ∼4.5% higher, respectively) but requires ∼2.35× fewer
parameters, ∼9.4× lower weight memory requirements, and ∼2.1× fewer multiply-add operations
than MobileNet-V1 and ∼1.65× fewer parameters, ∼6.6× lower weight memory requirements, and
∼1.1× fewer multiply-add operations than MobileNet-V2. These quantitative performance results
illustrate the efficacy of leveraging both visual attention condensers and machine-driven design
exploration to creating highly-efficient deep neural network architectures tailored for on-device image
recognition that striking a strong balance between accuracy and network complexity.

Given the promising results, future work involves exploring the effectiveness of AttendNets on
downstream tasks such as object detection and segmentation to empower a wider variety of vision-
related TinyML applications ranging from autonomous vehicles to wearable assistive technologies
to remote sensing. We also aim to explore different design choices for the individual components
of the visual attention condenser (e.g., mixing layers, embedding structure, condensation layer,
expansion layer) and their impact on accuracy and efficiency. Finally, the exploration of self-attention
architectures based on visual attention condensers and their adversarial robustness is a worthwhile
endeavor, particularly given recent focuses on robustness and dependability of deep learning.
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