
Platform-Aware Resource Allocation for Inference on
Multi-Accelerator Edge Devices

Ramakrishnan Sivakumar
Intel Corporation

ramakrishnan.sivakumar@intel.com

Saurabh Tangri
Intel Corporation

saurabh.tangri@intel.com

Satyam Srivastava
Intel Corporation

satyam.srivastava@intel.com

Abstract

With the fast pace of innovation in deep learning (DL) and machine learning
(ML) algorithms, large datasets, and capable hardware, real-world applications are
adopting artificial intelligence (AI) even on personal computing devices. These
devices tend to run many applications in parallel and try to offload compute to the
cloud. Lately, a lot of effort has been made to do more AI compute locally using
available device hardware to provide better privacy, improved reliability, and lower
costs. To enable optimal AI to compute on the local device, hardware vendors have
resorted to integrating AI accelerators on-chip. With this adoption, the traditional
system-on-chip now houses more than one compute entities for AI acceleration. In
this paper, we highlight how such a multi-accelerator personal computing system is
underutilized and results in sub-optimal performance without the right scheduling
interfaces. We propose a scheduling interface that understands the current system
state, user preferences, and specific workload characteristics to guide applications
and AI frameworks to effectively utilize the underlying hardware resulting in
improved user experience. We propose a holistic measure of performance rather
than measuring peak steady-state throughput as the performance indicator. Initial
experiments show that such an approach can provide up to 40% improvement in
system responsiveness in simulated usage of real-world applications.

1 Introduction

Most prominent ML applications rely on the cloud for compute scaling and ease of deployment
but with an increase in solution costs, security implications, and reliability issues the industry has
been moving towards deployment on the edge. By deploying such services directly to edge devices
ML applications can mitigate these while balancing local compute and cloud offload [12] [10].
Many cloud-based ML tools make it easy to experiment, train, deploy, and service DL applications.
However, porting the model and the inference runtime to edge poses a significant challenge. The
inference runtime tasked to evaluate models is highly optimized to saturate all available resources
when running on the cloud. These runtimes implement custom thread pools for server-class CPUs and
implement packed layout schemas to improve data locality for bigger caches when performing matrix
math [6]. There is also complex graph compiler-based techniques that have produced impressive
results for both cloud and edge workloads.

While the above optimizations lead to high throughput, these can be detrimental to the overall behavior
of a user or edge device where many applications contend for limited resources. When optimizing DL

6th Workshop on Energy Efficient Machine Learning and Cognitive Computing (EMC2 2020), Online (San Jose,
California).



libraries for edge devices it is very important to optimize for overall system performance and energy
efficiency. Inference runtimes also need to track increases in startup latencies that can impact the user
experience. In this paper, we propose broadening the evaluation of ML systems to deliver the greatest
ML throughput with minimal disruption to the user experience. We also propose a simple algorithm
to determine system resource allocation for inference based on available compute and memory, ML
model characteristics, runtime, and user preferences.

2 Existing Methods for ML Performance Evaluation

While the field of machine learning has matured considerably and been widely deployed, the meth-
ods used to quantify efficiency and performance are largely rooted in research. This is evident
from most articles that describe the “performance” of an ML system solely in terms of accuracy
[3]. In recent years, there have been efforts (academic, industry, and collaborative) to represent
both the effectiveness and efficiency of an ML system in real-world usage. DeepBench provides
benchmarks to assess training and inference on various frameworks [7]. It evaluates computational
metrics for fundamental ML operations (such as convolution) on various hardware platforms. CEA
N2D2 is an open-source benchmarking framework that simulates the performance of DL models
on various hardware configurations [5]. It enables designers to explore and generate DL models
and compares different hardware based on DL model accuracy, processing time, hardware cost, and
energy consumption. Stanford’s DAWNBench provides a reference set of common DL workloads
for quantifying training time, training cost, inference latency, and inference cost across different
optimization strategies, model architectures, software frameworks, clouds, and hardware [1]. The
MLPerf group provides a broad set of benchmarks for training and inference that evaluates hardware
based on accuracy, speed, and cost of operation [8]. The AdaBench proposal aims to build a standard
approach to benchmarking of complete ML pipelines across different applications, platforms, and
problem sizes [9].

In nearly all the methods for evaluating performance and efficiency, the goal is to maximize the speed
of training or inference (throughput). This approach works well for large-scale cloud systems where
the fastest time to complete a task is most important. Most methods fall short of recognizing the
vastly different usage patterns of a personal computation device (such as a PC or a mobile phone).

3 IRIS: Improved Responsiveness for Intelligent Systems

The performance of a user device should be defined by how responsive the platform is. This is
based on how the resources available are shared by different applications running at any time. The
current state of a given platform is dependent on platform configuration, application configuration
and Workload configuration. Platform configuration refers to the invariant components of a system,
both static (number of cores, available accelerators, total physical memory size and bandwidth, power
supply or battery capacity, available instruction set and frameworks) and dynamic (current core and
memory utilization, the existence of high priority workloads, current power settings). Application
configuration is influenced by user and developer preferences. User preferences are factors that vary
based on how the user intends to use a given application and how that impacts the user experience.
For example, a given application when used in the foreground of the system impacts the quality of
experience directly while the same application active in the background does not impact the user
experience. The intention of the user decides the relative priority of the application among other
active applications. Developer preferences are factors that the application developer controls such as
the choice of computing device, runtime, and ML model used to perform a specific task. Workload
configuration depends on the complexity of the workload that influences the amount of system
resources required to complete the workload in a reasonable time. Next, we propose an algorithm to
recommend the optimal workload configuration focused on enhancing user experience.

We consider a problem where an inference needs to be executed on a platform with a traditional
CPU, GPU, and a low-power custom ASIC designed for AI acceleration. The goal is to determine
the optimal target of execution and allocation of system resources that maximizes the quality of user
experience. Our method determines resources required for an ML application using –

• Selections made by a user and the ML runtime indicate their preference for speed or
efficiency. A user may indicate high performance or low power mode of operation. And

2



preferences on Latency sensitivity and FPS specification between Real-time, Foreground, or
Background.

• Pre-calculated heuristics computed over a large set of representative topologies provide ideal
resources for an unconstrained execution. These also include theoretical or roof-line analysis
to determine the compute vs memory boundedness of topology on the given accelerator.

• Platform configuration and current utilization determine rough upper bounds on the allocable
resources. While it may be possible to evict certain processes in favor of high priority
inference, it is not covered under the current method.

Let X , Y , and Z represent the platform, application, and workload factors described above. These
are defined as follows –
X = {xcu, xtm, xut, xum}
Y = {ypp, yfs, yls}
Z = {zbo}
The output of the algorithm is S = {sip, scu, scp, smf}. Here:

Table 1: Definition of inputs to IRIS

Name Description Values
[IP ]xcu Total number of compute units xcu ≥ 1 (Integer)
[IP ]xtm Available memory in gigabytes xtm ≥ 0 (Real)
[IP ]xut Current %utilization of the accelerator 0.0 ≤ xut ≤ 1.0 (Real)
[IP ]xum Current memory utilization 0.0 ≤ xum ≤ 1.0 (Real)

ypp User selected power plan (low/high) ypp ∈ {0, 1} (Boolean)
yfs FPS specification yfs ∈ {0, 1, 2} (Integer)
yls Latency specification yls ∈ {0, 1} (Boolean)

zbo Model-specific compute boundedness 0.0 ≤ zbo ≤ 1.0 (Real)

[IP ]sip Score per accelerator 0.0 ≤ sip ≤ 1.0 (Real)
[IP ]scu Suggested compute unit allocation 0.0 ≤ scu ≤ 1.0 (Real)
[IP ]scp Suggested context priority scp ∈ {0, 1} (Boolean)
[IP ]smf Suggested memory footprint 0.0 ≤ smf ≤ 1.0 (Real)

Based on the above figure, the decision algorithm is defined as follows.

sip = f(X,Y, Z)
sip = Wc.f(xcu, xut) +Wm.f(xtm, xum) +Wu.ypp
Where, W = Weight associated with each metric for a given IP

Wc = zbo - Compute weight determined by the compute boundedness of the model.
Wm = 1− zbo - Memory weight is defined as (1 - compute boundedness).
Wu = f(yfs, yls) - User setting weight defined as a function of FPS and Latency specification.

scu = zbo.f(xtm, xum, yfs, yls)
scp = f(yfs, yls)
smf = (1− zbo).f(xcu, xut, yfs, yls)

The compute or memory boundedness of the model plays a major role in influencing the score for the
IP with respect to the available compute or memory resources for that IP.
Note that if an app developer chooses to not utilize IRIS, their requests will override the suggestions.
This ensures that our solution does not interfere with the ability of a knowledgeable developer to
create a good experience for their user. Second, when inference sessions run longer than a certain
time duration, the method is re-run to compute resource allocations based on the new state of the
system.

3.1 Heuristic Analysis

The decision on the amount of compute and memory resources provided to an inference session
depends on the number of ways the model can be split for concurrent execution. Explicit analysis

3



of dependencies across model parameters provides us with the optimum amount of parallelism the
model can benefit from [4]. At a high level, model parameters are the attributes of a given model such
as the number of MACs (multiply accumulates), subgraph count, and op level complexity. Using the
optimal number of threads prevents wastage of system resources handling the additional threads as
well as reduces the inter-core data movement on multi-core platforms in turn reducing communication
traffic that may lead to bandwidth saturation [11].

In terms of memory usage, the best-case scenario is to fit the complete model in memory for the
total execution time. This guarantees minimal access times by preventing page faults. Heuristics
analysis provides an estimate of the maximum required memory by reading the input dimensions, the
architecture of the models, and the type of data being used. IRIS makes use of the above-reported
values to scale the number of threads and memory provided for the inference with respect to maximum
threads and memory footprint of the computation. We perform the heuristic analysis only if the
maximum FPS or best possible latencies are requested. By default, thresholds are set to 25% of total
compute units available and 25% of total system memory.

4 Experimental Results

We define user experience as the overall experience of using a product or application in terms of
responsiveness and ease of use.

4.1 Measuring Impact on System Responsiveness - Gaming + Streaming

As one of the leading usage scenarios of edge devices, we focus on Gaming + Streaming as a use
case to demonstrate the functionality of IRIS. In this experiment, we simulate the user playing a
graphics-intensive game in the foreground and also streaming the gamer playing the game which is a
common scenario on platforms such as Twitch. This live streaming of the gamer also includes the
background blur feature for privacy reasons. Background blur involves segmenting the user from the
background and applying a blur filter to the background. This is performed on each frame received
from the webcam facing the gamer using the DeepLabV3 model. This experiment is performed on a
4-core Intel KabyLake platform with Intel(R) Iris Pro Graphics 580. Intel OpenVino is used as the
framework on which the Background segmentation application is built on.

Figure 1 plots the sorted amount of time taken to render each frame of the game when a) The game is
played without any background segmentation which acts as the baseline and b) The game is played
along with the background segmentation executing on the GPU c) The game is played along with
the background segmentation executing on the GPU. We would like to focus on the farther end of
the graph that points to highlights the frames with the worst render times in all the 3 cases. In the
baseline case (a) the 99th percentile render times are in the ranges of 60-70ms per frame, whereas
when the segmentation happens on the GPU (c) the 99th percentile render times regress to 170 -
180ms per frame. This is a 2.14x regression in the gaming performance compared to the baseline case.
This is because the graphics-intensive game is competing for GPU resources with the background
segmentation process thus losing performance. More often than not application developers tend to
choose the GPUs for inference due to the general notion that GPUs provide higher parallelism and
throughput compared to CPUs. But this does not take into account the other applications running on
the platform and how choosing the GPU can impact the end-to-end user experience.

4.2 Responsiveness with Recommendations from IRIS - Gaming + Streaming

Next, we run the same set of concurrent applications on the same client system but with resource
allocation honoring the guidance provided by IRIS. The following are the inputs to IRIS for selecting
the IP to execute the background segmentation. Test System comprises 8 CPU threads and 4GB of
memory with both the CPU and memory being used up to 60% by the game at this time. ([CPU ]X =
{8, 4, 0.60, 0.60}). The Intel(R) Iris Pro Graphics 580 has 48 Execution units with access to 2GB
of memory and is utilized up to 90% at this time. ([GPU ]X = {48, 2, 0.90, 0.90}). The user
and runtime configuration includes power plan set to high performance, FPS specification set to
1 (medium) and Latency specification set to 0 (Y = {1, 1, 0}), and the compute boundedness of
DeepLabV3 model set to 0.8 indicating high compute boundedness due to the convolution heave
nature of the model (Z = {0.8}). Based on the above inputs IRIS recommends an allocation.

4



[CPU]S = {1.0, 0.25, 1, 0.25}
[GPU]S = {0.0, 0.25, 0, 0.25}

IRIS strongly recommends the use of CPU in this particular use case with a CPU score of 1.0 and a
GPU score of 0.0. Within the CPU IRIS recommends allocating 25% of the available memory and 25%
of the available compute units (CPU cores) for this inference. Based on the above recommendations
provided by IRIS, the background segmentation is now executed on the CPU to prevent the contention
of GPU resources that are being utilized by the game. Figure 1 outlines the results of gaming
performance when the background segmentation is executed on the CPU compared to when the
background segmentation is executed on the GPU. From the 99th percentile render times we observe
a significant reduction in gaming performance regression from 2.14x to 1.52x.

Figure 1: Gaming perfromance for Gaming + Background Segmentation on CPU and GPU

It can be seen that a more thoughtful allocation of resources for inference leads to improvements in
both gaming and background segmentation performance thus improving the overall user experience.
These are achieved without a significant drop (under 15%) in the inference throughput. In some cases,
the improvement in responsiveness can be large especially when workload options allow for more
stingy configurations. This simply cannot be done with normal runtimes which are designed for high
throughput irrespective of system state.

5 Conclusions and Future Work

In this paper, we present a detailed analysis of quantifying machine learning inference performance on
client and edge devices. We first survey existing methods of performance evaluation and observe that
most such metrics are centered around peak steady-state throughput. We demonstrate experimentally
that such techniques lead to adverse effects on system responsiveness/ user experience which is
critical in user devices. Finally, we propose a method for inference system resource allocation
that leads to a large improvement in system responsiveness without a significant drop in inference
throughput.

In the future, this method can be extended to take all the metrics into considerations for superior
resource allocations. In addition to the static parameters described above, it is also possible to include
a feedback mechanism that would adjust the decision thresholds of the algorithm. This mechanism
could consume data available through telemetry and may use reinforcement learning methods to
arrive at the best parameters during use.

5



References
[1] Cody A Coleman et al. Dawnbench: An end-to-end deep learning benchmark and competition. NIPS ML

Systems Workshop, 2017.

[2] Microsoft Corp. Windows ML. https://github.com/Microsoft/Windows-Machine-Learning,
accessed 2019.

[3] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

[4] Seunghak Lee, Jin Kyu Kim, Xun Zheng, Qirong Ho, Garth A Gibson, and Eric P Xing. On model
parallelization and scheduling strategies for distributed machine learning, 2014.

[5] CEA LIST. Neural network design & deployment. https://github.com/CEA-LIST/N2D2, accessed
2019.

[6] Yizhi Liu, Yao Wang, Ruofei Yu, Mu Li, Vin Sharma, and Yida Wang. Optimizing cnn model inference on
cpus. arXiv:1809.02697v3, 2019.

[7] Sharan Narang. Deepbench. https://svail.github.io/DeepBench/, accessed 2019.

[8] David Patterson et al. Mlperf: A benchmark suite for machine learning from academic-industry cooperative,
2018.

[9] Tilmann Rabl et al. Adabench - towards and industry standard benchmark for advanced analytics. In TPC
Technology Conference on Performance Evaluation & Benchmarking, 2019.

[10] Zhi Zhou et al. Edge intelligence: Paving the last mile of artificial intelligence with edge computing.
Proceedings of the IEEE, 107, 2019.

[11] Kaiwei Zou, Ying Wang, Huawei Li, and Xiaowei Li. Learn-to-scale: Parallelizing deep learning inference
on chip multiprocessor architecture, 2019.

[12] Zhou Zou et al. Edge and fog computing enabled ai for iot -an overview, 2019.

6 Appendix

6.1 Measuring Impact on System Responsiveness - Productivity + Inference

As another leading usage scenario of edge devices, we focus on Productivity and break it down into tasks to help
quantify the user experience. It comprises word processing, presentation, spreadsheets, and email clients. Each
of the sub scenarios consists of a sequence of actions defining a user’s interaction which are automated through
scripts. We build instrumentation in the system to measure the time taken to complete a particular operation.
Some of the tasks that we track are: application launch time, opening drop-down menus, converting files to
different formats, opening files saved on the disk, plotting graphs, media processing. The industry is moving
towards integrating these basic productivity tasks with intelligent features based on ML. To simulate concurrent
productivity and ML we added a continuous background inference (image classification with SqueezeNet) to
foreground productivity tasks using Windows ML [2] at default settings. The graphs in Figure 2 show anywhere
between 70% to 120% increase in time taken to launch the application and between 20% to 115% longer time
to complete the previously defined tasks. Runtimes tuned to achieve the highest throughputs with their default
settings will cause adverse effects on the user experience of the device.

6.2 Responsiveness with Recommendations from IRIS - Productivity + Inference

Next, we run the same set of concurrent applications on the same client system where the GPU is unavailable for
use. We test how IRIS handles resource allocation when only the CPU is available for use. Client System used is
a laptop comprising 8 CPU threads and 4GB of memory with both the CPU and memory being used up to 25%
by other applications at this time ([CPU ]X = {8, 4, 0.25, 0.25}). The user and runtime configuration includes
power plan set to high performance, FPS specification set to 0 indicating no requirement of high throughput, and
Latency specification set to 1 indicating that this inference for the productivity tasks needs to be completed with
low latency(Y = {1, 0, 1}), and the compute boundedness of SqueezeNet model set to 0.5 indicating moderate
compute boundedness (Z = {0.5}). The heuristics analysis recommends ideal parallelism of 4 threads and a
memory footprint of 2GB for optimal inference performance. Based on the above inputs IRIS recommends an
allocation [CPU ]S = {1.0, 0.5, 1, 0.5}.

6

https://github.com/Microsoft/Windows-Machine-Learning
https://github.com/CEA-LIST/N2D2
https://svail.github.io/DeepBench/


Figure 2: Relative performance comparison of productivity tasks with concurrent background ML
processing

7


	Introduction
	Existing Methods for ML Performance Evaluation
	IRIS: Improved Responsiveness for Intelligent Systems
	Heuristic Analysis

	Experimental Results
	Measuring Impact on System Responsiveness - Gaming + Streaming
	Responsiveness with Recommendations from IRIS - Gaming + Streaming

	Conclusions and Future Work
	Appendix
	Measuring Impact on System Responsiveness - Productivity + Inference
	Responsiveness with Recommendations from IRIS - Productivity + Inference


