
Algorithm-Accelerator Co-Design for
Deep Learning Specialization

Zhiru Zhang
School of ECE, Cornell University

csl.cornell.edu/~zhiruz

EMC^2 Workshop @ NeurIPS, 12/13/2019

http://www.csl.cornell.edu/~zhiruz/

▸ Strong demand for faster DNNs with better energy efficiency

Need for Efficient Deep Learning

1

2

Specialized DNN Processors are Ubiquitous

Apple (A12)
Samsung (Exynos 9820)
Huawei (Kirin 970)
Qualcomm (Hexagon)

Mobile

Google (TPU)
Microsoft (Brainwave)
Xilinx (EC2 F1)
Intel (FPGAs, Nervana)
AWS Offerings

Cloud

Google (Edge TPU)
Intel (Movidius)
Deephi/Xilinx (Zynq)
ARM (announced)
Many Startups

Embedded

3

Co-Design for Deep Learning Specialization

CPU

Algorithms Accelerators

Large
Network

Pruned Quantized GPUCustom
Hardware

▸ DNN performance and efficiency remain a big challenge
▸ Specialization necessitates algorithm and hardware co-design

4

Topics of this Talk

Quantization

Unitary Group Convs [Zhao CVPR’19]
Unitary

Transform

Sparse
Connection

Structured
Weights

Circulant Compression [Sindhwani NIPS’16]
CirCNN [Ding MICRO’17, Wang FPGA’18]

Circulant
Matrix

Fine-grain Channel Gating [Hua MICRO’19, NeurIPS’19]

Outlier Splitting [Zhao ICML’19]

Outlier Overwrite [Zhao arXiv’19]

Trained

Data
Free

Precision Gating [Zhang arXiv’19]

BNN Xcel on FPGA [Zhao FPGA’17]

ShuffleNet [Zhang CVPR’18]

MobileNet [Howard arXiv’17, Sandler CVPR’18]Group
Conv

Fine-
grain

Deep Compression [Han ICLR’16]

Tensaraus [Srivastava HPCA’20]

DNN Model
Optimization

Dynamic
Pruning

5

Channel Gating Neural Networks
Exploiting Dynamic Sparsity

Channel Gating Neural Networks
Weizhe Hua, Yuan Zhou, Christopher De Sa, Zhiru Zhang, Edward G. Suh
Conference on Neural Information Processing Systems (NeurIPS), December 2019

Boosting the Performance of CNN Accelerators with Dynamic
Fine-Grained Channel Gating
Weizhe Hua, Yuan Zhou, Christopher De Sa, Zhiru Zhang, Edward G. Suh
International Symposium on Microarchitecture (MICRO), October 2019

▸ Sparse pruning (fine-grain) makes the model unstructured
▸ Group conv (coarse-grain) often incurs nontrivial accuracy loss
▸ Inference time of pruned model is agonistic to the actual input

Static Pruning for DNNs

6

Channel Shuffle
(e.g. ShuffleNet)

*

Weight filtersGroup 1

Group 2

Group Convolution
(e.g. MobilleNet)

*

Weight filtersGroup 1

Group 2

Sparse Pruning
(e.g. Deep Compression)

*
H

W

K

K

Weight filters

Dynamic Pruning using Input-Dependent Properties?

7

Human visual recognition
focuses on salient regions

Basic Idea: dynamically reduce
compute effort in unimportant

regions of input features

Image Importance

Channel Gating for CNNs: High-Level Ideas

8

For each pixel in an output feature map:
1. Estimate its “importance” from partial layer computation
2. Skip remaining computation if deemed “unimportant”

Image or
Feature

“Importance”
Estimate

Partial layer
computation

“Important” Pixels

“Unimportant” Pixels

Learned
Gate

Execute
remaining

computation

Skip
remaining

computation

Dynamic pruning exploits input-dependent characteristics
Fined-grained pruning avoids overly aggressive compression that degrades accuracy

Rationale of Using Partial Layer Computation

▸ Approximating output features with partial sums
– Partial sum and final convolution result are often highly correlated in CNNs

9

* =

p = 100% input channels = c

partial sum =∑"#$
% 𝑤"𝑥"; final sum =∑"#$(𝑤"𝑥"

Correlation(partial sum, final sum) = 1.00

Rationale of Using Partial Layer Computation

▸ Approximating output features with partial sums
– Partial sum and final convolution result are often highly correlated in CNNs

10

* =

p = 50% input channels

partial sum =∑"#$
% 𝑤"𝑥"; final sum =∑"#$(𝑤"𝑥"

Correlation(partial sum, final sum) = 0.86

Rationale of Using Partial Layer Computation

▸ Approximating output features with partial sums
– Partial sum and final convolution result are often highly correlated in CNNs

11

* =

p = 25% input channels

partial sum =∑"#$
% 𝑤"𝑥"; final sum =∑"#$(𝑤"𝑥"

Correlation(partial sum, final sum) = 0.72

Rationale of Using Partial Layer Computation

▸ Approximating output features with partial sums
– Partial sum and final convolution result are often highly correlated in CNNs

12

* =

p = 12.5% input channels

partial sum =∑"#$
% 𝑤"𝑥"; final sum =∑"#$(𝑤"𝑥"

Correlation(partial sum, final sum) = 0.56

*
Weights

Conditional Path

Conv Layer with Channel Gating

*
Weights

Base Path output
channel

Partial Sum

𝑿𝒑

𝑿𝒓

1. Obtain partial sum by performing convolution over the first p input channels (base path)
2. The gate outputs a binary decision by comparing partial sum with a learnable threshold
3. Skip convolution over remaining r channels if decision = 0 (conditional path)

13

Gate

0

1

∆
threshold

per output channel per layer

Training Channel Gating Networks

▸ Single-pass training to learn effective gating policy
– Each building block in the training computation graph must be differentiable

14

Backward

Extended computation graph of one conv
layer for training

Approximation

𝑺 𝐗, Δ =
𝟏

𝟏 + 𝒆𝜺(𝑿7Δ)

Results on CIFAR-10
ResNet-18 Base path

Fraction
Test
Error

FLOPs
Saved

Baseline 1 5.4% -
Channel Gating 1/8 5.44% 81.8%

(5X+ reduction)
Channel Gating 1/16 5.96% 87.4%

(~8X reduction)

15

ଵݕଶݕଷݕ

ݔ

ݕ

ොݔොଷݔ ොଵݔ ොଶݔ

ଵݔ ଶݔ ଷݔ

channel
shuffling

CG with
channel
grouping

Channel Gating Composes with Grouping and Shuffling

16

For output group yk, input group xk is on
the base path and the rest is conditional

Shuffle grouping for the next layer

17

More Results on CIFAR-10

▸ Channel gating applies to a variety of DNN models

Results on ImageNet

18

ResNet-18 Dynamic Test Error
(Top 1)

FLOP
Reduction

Baseline / 30.8% 1x
Soft Filter Pruning (IJCAI’18) N 32.9% 1.72x
Network Slimming (ICCV’17) N 32.8% 1.39x

Collaborative Layers (CVPR’17) Y 33.7% 1.53x
Discrimination-aware Pruning (NIPS’18) N 32.7% 1.85x

Channel Gating Y 31.7% 2.03x
Channel Gating + KD Y 31.0% 2.82x

AlexNet Dynamic Test Error
(Top 5)

FLOP
Reduction

Baseline / 19.4% 1x
SnaPEA (ISCA’18) Y 30.4% 2.11x
Channel Gating Y 20.0% 2.65x

Sampled Feature Convolution in Conditional Path

▸ Compute in conditional path is sparse
– Output activations are sparse
– Their spatial locations vary dynamically

▸ But regularity is preserved along channel dimension
– Per output activation, the input channels in the conditional

path (𝑿𝒓) are either used altogether or entirely skipped

𝒚𝟎 𝒚𝟏
Output channels

Input channels

19

Accelerator Architecture for Channel Gating Networks (CGNet)

20

▸Base (dense) & conditional (sparse) paths reuse the same systolic array
▸The whole accelerator is designed in HLS C++ (by two PhD students)

21

Preliminary ASIC Evaluation (8-bit ResNet-18 on ImageNet)

Platform
ASIC

Baseline CGNet

Freq. (MHz) 800 800

Power (Watt) 0.202 0.256

ImageNet Throughput (fps) 253.8 580.6

Energy/frame (mJ) 0.796 0.441

Nvidia
GTX

1080Ti

1923

225

1563.7

143.9

CGNet is 2.3× faster with 1.8× higher energy efficiency compared to
a baseline accelerator w/o dynamic pruning (~20% area overhead)

Intel
i7

7700k

4200

91

13.8

6594.2

22

Ongoing Work: Dynamic Quantization with Precision Gating

MSBs

LSBs

Full
Precision

*
Weights

Base Path output
channel

Partial Sum
(Importance)

*
Weights

Conditional Path

𝑿𝒉

𝑿𝒍

Gate

0

1

∆

Threshold
(per channel per layer)

▸ Comparing PG against
prediction-based execution
(PBE) [Song et al. ISCA’18]
– PBE does zero prediction with

fixed threshold
–

▸ Using a similar bitwidth, PG is
25+% more accurate than PBE
on ShuffleNet for ImageNet

Precision Gating (PG): Preliminary Results

23

24

Outlier Channel Splitting
Improving DNN Quantization without Re-training

Improving Neural Network Quantization without
Retraining Using Outlier Channel Splitting
Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Christopher De Sa, Zhiru Zhang
International Conf. on Machine Learning (ICML), June 2019

https://github.com/cornell-zhang/dnn-quant-ocs

https://github.com/cornell-zhang/dnn-quant-ocs

▸ DNN quantization techniques that require training are often discouraged by
the current ML service model

▸ Reasons to prefer data-free quantization:
1. ML providers typically cannot access customer training data
2. Customer is using a pre-trained off-the-shelf model
3. Customer is unwilling to retrain a legacy model
4. Customer lacks the expertise for quantization training

25

Quantization without Training Data

ML Service Provider
(Owns the hardware)

Private
Data

Model
Training

Floating-Point
Model

Data-Free
Quantization

Quantized
Model

ML Customer
(Owns the data)

▸ DNN weights and activations are distributed in a bell curve that peaks
near zero
– Most values are close to zero, rare outliers are large

The Outlier Problem

Outliers

Uniform Quantizer

Q 𝑥 = round(
𝑥(2"7E − 1)
max(𝑥))

max(𝑥)
2"7E − 1

− Grid points extend to max(|𝑥|)
− Outliers stretch the quantization grid,

resulting in poor resolution

Lo
g

Fr
eq

ue
nc

y
26

Prior Arts on Addressing Outliers

Clipping
Sung arXiv’15, Shin ICASSP’16, Migacz GTC’17,
Banner arXiv’18

+ Reduces quantization noise
+ Used in industry solutions (TensorRT)
− Distorts outliers, accuracy loss

Distorted
Outliers

Outlier-Aware Quantization
Park ECCV’18, Park ISCA’18

+ Reduces quantization noise
+ Preserves outlier values
− Requires additional sparse hardware

Lo
g

Fr
eq

ue
nc

y

Two different
quantizers

Lo
g

Fr
eq

ue
nc

y

27

▸ OCS splits outlier weights, halving their values
– The network remains functionally equivalent
– But affected outliers are moved toward center of the distribution
– Example: Duplicate node y2 to halve the weight w2

28

Our Proposal: Outlier Channel Splitting (OCS)

z

y2y1

w2w1

z

y2y1 y2

w1

w2

2w2

2

𝑧 = 𝑤E𝑦E + 𝒘𝟐𝒚𝟐 𝑧 = 𝑤E𝑦E +
𝑤S
2
𝑦S +

𝑤S
2
𝑦S

*
Duplicate
Channel Duplicate

Filter*

Weight
Filter

Input
Channels

Outlier

▸ Improves quantization without retraining
▸ Outperforms existing methods with negligible size overhead (<2%)

in both CNNs and RNNs
▸ Applies to both commodity CPUs/GPUs and custom accelerators

29

Baseline
Uniform Quantizer

Prior Art
Clipping

Our Method
Outlier Channel Splitting

+ Reduces quantization noise
+ Used in NVIDIA TensorRT
− Distorts outliers

+ Reduces quantization noise
+ Removes outliers
− Model size overhead

− Poor quantizer resolution
due to outliers

OutliersLo
g

Fr
eq

ue
nc

y
Distorted
Outliers

OCS vs. Prior Arts

30

OCS Results on CNN Weights

Network
(Float Acc.)

Wt.
Bits

Clip Clip

Best

OCS +
Clip

None MSE ACIQ KL 0.01 0.02

VGG-16 BN
(73.4)

6 70.8 71.3 71.2 63.2 71.3 71.8 71.8
5 63.1 66.9 61.2 62.7 66.9 68.8 69.5
4 0.2 53.5 34.2 59.4 59.4 63.8 63.8

ResNet-50
(76.1)

6 72.9 73.5 74.3 71.6 74.3 74.8 74.8
5 14.5 69.1 69.9 69.4 69.9 71.0 71.9
4 0.1 45.0 33.2 62.9 62.9 66.2 67.1

DenseNet-121
(74.4)

6 71.0 71.4 71.1 60.7 71.4 73.2 73.1
5 46.9 65.4 61.4 54.6 65.4 70.0 70.7
4 0.4 33.3 25.2 42.6 42.6 52.7 56.5

Inception-V3
(75.9)

6 58.3 66.2 62.3 63.0 66.2 70.5 71.7
5 0.5 30.4 29.6 40.5 40.5 57.0 60.0
4 0.1 0.2 0.1 1.6 1.6 2.1 2.3

Best clip method is
bolded

Blue = +1% or better vs. clip

31

Co-Design of DNN Algorithm & Hardware Yields Highest Efficiency

Quantization

Unitary Group Convs [Zhao CVPR’19]
Unitary

Transform

Sparse
Connection

Structured
Weights

Circulant Compression [Sindhwani NIPS’16]
CirCNN [Ding MICRO’17, Wang FPGA’18]

Circulant
Matrix

Fine-grain Channel Gating [Hua MICRO’19, NeurIPS’19]

Outlier Splitting [Zhao ICML’19]

Outlier Overwrite [Zhao arXiv’19]

Trained

Data
Free

Precision Gating [Zhang arXiv’19]

BNN Xcel on FPGA [Zhao FPGA’17]

ShuffleNet [Zhang CVPR’18]

MobileNet [Howard arXiv’17, Sandler CVPR’18]Group
Conv

Fine-
grain

Deep Compression [Han ICLR’16]

Tensaraus [Srivastava HPCA’20]

DNN Model
Optimization

Dynamic
Pruning

32

Related Research Efforts in My Group at Cornell

Efficient
Machine
Learning

Intermediate
Language

// algorithm spec based on TVM
diff = hcl.compute(train.shape, [train],
lambda i, j: train[i][j]^test)
// quantization
hcl.downsize(diff, hcl.uint(49))

Compiler & CADApplication & Programming

Automatic
Synthesis &

Tuning

Custom
Accelerators

Hardware Design

HeteroCL (FPGA’19),
T2S-Tensor (FCCM’19)

CGNet (NIPS’19), HadaNet
(CVPR’19), OCS (ICML‘19),
GraphZoom (arXiv’19)

Tensaurus (HPCA’20),
Celerity (IEEEMICRO’18)

PRIMAL (DAC’19), ASSIST
(DAC’19), QuickEST (FCCM’19)
LAMDA (FCCM’19)

Algorithms Accelerators

Co-evolution of efficient ML and agile hardware design is generating
a host of exciting research opportunities

