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▸ Strong demand for faster DNNs with better energy efficiency

Need for Efficient Deep Learning
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Specialized DNN Processors are Ubiquitous

Apple (A12)
Samsung (Exynos 9820)
Huawei (Kirin 970)
Qualcomm (Hexagon)

Mobile

Google (TPU)
Microsoft (Brainwave)
Xilinx (EC2 F1)
Intel (FPGAs, Nervana)
AWS Offerings

Cloud

Google (Edge TPU)
Intel (Movidius)
Deephi/Xilinx (Zynq)
ARM (announced)
Many Startups

Embedded
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Co-Design for Deep Learning Specialization

CPU

Algorithms Accelerators

Large 
Network

Pruned Quantized GPUCustom
Hardware

▸ DNN performance and efficiency remain a big challenge
▸ Specialization necessitates algorithm and hardware co-design
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Topics of this Talk

Quantization

Unitary Group Convs [Zhao CVPR’19]
Unitary

Transform

Sparse 
Connection

Structured 
Weights

Circulant Compression [Sindhwani NIPS’16]
CirCNN [Ding MICRO’17, Wang FPGA’18]

Circulant
Matrix

Fine-grain Channel Gating [Hua MICRO’19, NeurIPS’19]

Outlier Splitting [Zhao ICML’19]

Outlier Overwrite [Zhao arXiv’19]

Trained

Data 
Free

Precision Gating [Zhang arXiv’19]

BNN Xcel on FPGA [Zhao FPGA’17]

ShuffleNet [Zhang CVPR’18]

MobileNet [Howard arXiv’17, Sandler CVPR’18]Group 
Conv

Fine-
grain

Deep Compression [Han ICLR’16]

Tensaraus [Srivastava HPCA’20]

DNN Model
Optimization

Dynamic 
Pruning
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Channel Gating Neural Networks
Exploiting Dynamic Sparsity

Channel Gating Neural Networks
Weizhe Hua, Yuan Zhou, Christopher De Sa, Zhiru Zhang, Edward G. Suh
Conference on Neural Information Processing Systems (NeurIPS), December 2019

Boosting the Performance of CNN Accelerators with Dynamic 
Fine-Grained Channel Gating
Weizhe Hua, Yuan Zhou, Christopher De Sa, Zhiru Zhang, Edward G. Suh
International Symposium on Microarchitecture (MICRO), October 2019



▸ Sparse pruning (fine-grain) makes the model unstructured
▸ Group conv (coarse-grain) often incurs nontrivial accuracy loss
▸ Inference time of pruned model is agonistic to the actual input

Static Pruning for DNNs
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Channel Shuffle 
(e.g. ShuffleNet) 

*

Weight filtersGroup 1

Group 2

Group Convolution
(e.g. MobilleNet)

*

Weight filtersGroup 1

Group 2

Sparse Pruning
(e.g. Deep Compression)

*
H

W

K

K

Weight filters



Dynamic Pruning using Input-Dependent Properties?
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Human visual recognition 
focuses on salient regions

Basic Idea: dynamically reduce 
compute effort in unimportant 

regions of input features

Image Importance



Channel Gating for CNNs: High-Level Ideas
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For each pixel in an output feature map:
1. Estimate its “importance” from partial layer computation
2. Skip remaining computation if deemed “unimportant”

Image or 
Feature

“Importance” 
Estimate

Partial layer 
computation

“Important” Pixels

“Unimportant” Pixels

Learned 
Gate

Execute 
remaining 

computation

Skip 
remaining 

computation

Dynamic pruning exploits input-dependent characteristics
Fined-grained pruning avoids overly aggressive compression that degrades accuracy



Rationale of Using Partial Layer Computation

▸ Approximating output features with partial sums
– Partial sum and final convolution result are often highly correlated in CNNs
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* =

p = 100% input channels = c

partial sum =∑"#$
% 𝑤"𝑥"; final sum =∑"#$( 𝑤"𝑥"

Correlation(partial sum, final sum)  = 1.00



Rationale of Using Partial Layer Computation

▸ Approximating output features with partial sums
– Partial sum and final convolution result are often highly correlated in CNNs
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* =

p = 50% input channels 

partial sum =∑"#$
% 𝑤"𝑥"; final sum =∑"#$( 𝑤"𝑥"

Correlation(partial sum, final sum)  = 0.86



Rationale of Using Partial Layer Computation

▸ Approximating output features with partial sums
– Partial sum and final convolution result are often highly correlated in CNNs
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* =

p = 25% input channels

partial sum =∑"#$
% 𝑤"𝑥"; final sum =∑"#$( 𝑤"𝑥"

Correlation(partial sum, final sum)  = 0.72



Rationale of Using Partial Layer Computation

▸ Approximating output features with partial sums
– Partial sum and final convolution result are often highly correlated in CNNs
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* =

p = 12.5% input channels

partial sum =∑"#$
% 𝑤"𝑥"; final sum =∑"#$( 𝑤"𝑥"

Correlation(partial sum, final sum)  = 0.56



*
Weights

Conditional Path

Conv Layer with Channel Gating

*
Weights

Base Path output 
channel

Partial Sum 

𝑿𝒑

𝑿𝒓

1. Obtain partial sum by performing convolution over the first p input channels (base path) 
2. The gate outputs a binary decision by comparing partial sum with a learnable threshold
3. Skip convolution over remaining r channels if decision = 0 (conditional path) 
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Gate

0

1

∆
threshold

per output channel per layer



Training Channel Gating Networks

▸ Single-pass training to learn effective gating policy 
– Each building block in the training computation graph must be differentiable
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Backward

Extended computation graph of one conv 
layer for training

Approximation

𝑺 𝐗, Δ =
𝟏

𝟏 + 𝒆𝜺(𝑿7Δ)



Results on CIFAR-10
ResNet-18 Base path 

Fraction
Test 
Error

FLOPs  
Saved

Baseline 1 5.4% -
Channel Gating 1/8 5.44% 81.8%

(5X+ reduction)
Channel Gating 1/16 5.96% 87.4% 

(~8X reduction)
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channel 
shuffling

CG with
channel 
grouping

Channel Gating Composes with Grouping and Shuffling
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For output group yk, input group xk is on 
the base path and the rest is conditional  

Shuffle grouping for the next layer
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More Results on CIFAR-10

▸ Channel gating applies to a variety of DNN models



Results on ImageNet
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ResNet-18 Dynamic Test Error 
(Top 1)

FLOP
Reduction

Baseline / 30.8% 1x
Soft Filter Pruning (IJCAI’18) N 32.9% 1.72x
Network Slimming (ICCV’17) N 32.8% 1.39x

Collaborative Layers (CVPR’17) Y 33.7% 1.53x
Discrimination-aware Pruning (NIPS’18) N 32.7% 1.85x

Channel Gating Y 31.7% 2.03x
Channel Gating + KD Y 31.0% 2.82x

AlexNet Dynamic Test Error 
(Top 5)

FLOP
Reduction

Baseline / 19.4% 1x
SnaPEA (ISCA’18) Y 30.4% 2.11x
Channel Gating Y 20.0% 2.65x



Sampled Feature Convolution in Conditional Path

▸ Compute in conditional path is sparse
– Output activations are sparse 
– Their spatial locations vary dynamically

▸ But regularity is preserved along channel dimension
– Per output activation, the input channels in the conditional 

path (𝑿𝒓) are either used altogether or entirely skipped

𝒚𝟎 𝒚𝟏
Output channels

Input channels
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Accelerator Architecture for Channel Gating Networks (CGNet)
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▸Base (dense) & conditional (sparse) paths reuse the same systolic array
▸The whole accelerator is designed in HLS C++ (by two PhD students)
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Preliminary ASIC Evaluation (8-bit ResNet-18 on ImageNet)

Platform
ASIC

Baseline CGNet

Freq. (MHz) 800 800

Power (Watt) 0.202 0.256

ImageNet Throughput (fps) 253.8 580.6

Energy/frame (mJ) 0.796 0.441

Nvidia 
GTX

1080Ti

1923

225

1563.7

143.9

CGNet is 2.3× faster with 1.8× higher energy efficiency compared to 
a baseline accelerator w/o dynamic pruning (~20% area overhead)

Intel
i7

7700k

4200

91

13.8

6594.2
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Ongoing Work: Dynamic Quantization with Precision Gating

MSBs

LSBs

Full 
Precision

*
Weights

Base Path output 
channel

Partial Sum
(Importance)

*
Weights

Conditional Path

𝑿𝒉

𝑿𝒍

Gate

0

1

∆

Threshold
(per channel per layer)



▸ Comparing PG against 
prediction-based execution 
(PBE) [Song et al. ISCA’18]
– PBE does zero prediction with 

fixed threshold
–

▸ Using a similar bitwidth, PG is 
25+% more accurate than PBE 
on ShuffleNet for ImageNet

Precision Gating (PG): Preliminary Results
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Outlier Channel Splitting
Improving DNN Quantization without Re-training

Improving Neural Network Quantization without 
Retraining Using Outlier Channel Splitting
Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Christopher De Sa, Zhiru Zhang
International Conf. on Machine Learning (ICML), June 2019

https://github.com/cornell-zhang/dnn-quant-ocs

https://github.com/cornell-zhang/dnn-quant-ocs


▸ DNN quantization techniques that require training are often discouraged by 
the current ML service model

▸ Reasons to prefer data-free quantization:
1. ML providers typically cannot access customer training data
2. Customer is using a pre-trained off-the-shelf model
3. Customer is unwilling to retrain a legacy model
4. Customer lacks the expertise for quantization training
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Quantization without Training Data

ML Service Provider
(Owns the hardware)

Private
Data

Model
Training

Floating-Point 
Model

Data-Free
Quantization

Quantized 
Model

ML Customer
(Owns the data)



▸ DNN weights and activations are distributed in a bell curve that peaks 
near zero
– Most values are close to zero, rare outliers are large

The Outlier Problem

Outliers

Uniform Quantizer

Q 𝑥 = round(
𝑥(2"7E − 1)
max( 𝑥 ) )

max( 𝑥 )
2"7E − 1

− Grid points extend to max(|𝑥|)
− Outliers stretch the quantization grid,

resulting in poor resolution

Lo
g 

Fr
eq

ue
nc

y
26



Prior Arts on Addressing Outliers

Clipping
Sung arXiv’15, Shin ICASSP’16, Migacz GTC’17,
Banner arXiv’18

+ Reduces quantization noise
+ Used in industry solutions (TensorRT)
− Distorts outliers, accuracy loss

Distorted
Outliers

Outlier-Aware Quantization
Park ECCV’18, Park ISCA’18

+ Reduces quantization noise
+ Preserves outlier values
− Requires additional sparse hardware

Lo
g 

Fr
eq

ue
nc

y

Two different 
quantizers

Lo
g 

Fr
eq

ue
nc

y
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▸ OCS splits outlier weights, halving their values 
– The network remains functionally equivalent
– But affected outliers are moved toward center of the distribution
– Example: Duplicate node y2 to halve the weight w2 
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Our Proposal: Outlier Channel Splitting (OCS)

z

y2y1

w2w1

z

y2y1 y2

w1

w2

2w2

2

𝑧 = 𝑤E𝑦E + 𝒘𝟐𝒚𝟐 𝑧 = 𝑤E𝑦E +
𝑤S
2
𝑦S +

𝑤S
2
𝑦S

*
Duplicate 
Channel Duplicate 

Filter*

Weight 
Filter

Input 
Channels

Outlier



▸ Improves quantization without retraining
▸ Outperforms existing methods with negligible size overhead (<2%) 

in both CNNs and RNNs
▸ Applies to both commodity CPUs/GPUs and custom accelerators
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Baseline
Uniform Quantizer

Prior Art
Clipping

Our Method
Outlier Channel Splitting

+ Reduces quantization noise
+ Used in NVIDIA TensorRT
− Distorts outliers 

+ Reduces quantization noise
+ Removes outliers
− Model size overhead

− Poor quantizer resolution
due to outliers

OutliersLo
g 

Fr
eq

ue
nc

y
Distorted
Outliers

OCS vs. Prior Arts
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OCS Results on CNN Weights

Network
(Float Acc.)

Wt.
Bits

Clip Clip

Best

OCS + 
Clip

None MSE ACIQ KL 0.01 0.02

VGG-16 BN
(73.4)

6 70.8 71.3 71.2 63.2 71.3 71.8 71.8
5 63.1 66.9 61.2 62.7 66.9 68.8 69.5
4 0.2 53.5 34.2 59.4 59.4 63.8 63.8

ResNet-50
(76.1)

6 72.9 73.5 74.3 71.6 74.3 74.8 74.8
5 14.5 69.1 69.9 69.4 69.9 71.0 71.9
4 0.1 45.0 33.2 62.9 62.9 66.2 67.1

DenseNet-121
(74.4)

6 71.0 71.4 71.1 60.7 71.4 73.2 73.1
5 46.9 65.4 61.4 54.6 65.4 70.0 70.7
4 0.4 33.3 25.2 42.6 42.6 52.7 56.5

Inception-V3
(75.9)

6 58.3 66.2 62.3 63.0 66.2 70.5 71.7
5 0.5 30.4 29.6 40.5 40.5 57.0 60.0
4 0.1 0.2 0.1 1.6 1.6 2.1 2.3

Best clip method is 
bolded

Blue = +1% or better vs. clip
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Co-Design of DNN Algorithm & Hardware Yields Highest Efficiency

Quantization

Unitary Group Convs [Zhao CVPR’19]
Unitary

Transform

Sparse 
Connection

Structured 
Weights

Circulant Compression [Sindhwani NIPS’16]
CirCNN [Ding MICRO’17, Wang FPGA’18]

Circulant
Matrix

Fine-grain Channel Gating [Hua MICRO’19, NeurIPS’19]

Outlier Splitting [Zhao ICML’19]

Outlier Overwrite [Zhao arXiv’19]

Trained

Data 
Free

Precision Gating [Zhang arXiv’19]

BNN Xcel on FPGA [Zhao FPGA’17]

ShuffleNet [Zhang CVPR’18]

MobileNet [Howard arXiv’17, Sandler CVPR’18]Group 
Conv

Fine-
grain

Deep Compression [Han ICLR’16]

Tensaraus [Srivastava HPCA’20]

DNN Model
Optimization

Dynamic 
Pruning
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Related Research Efforts in My Group at Cornell 

Efficient 
Machine 
Learning

Intermediate 
Language

// algorithm spec based on TVM
diff = hcl.compute(train.shape, [train], 
lambda i, j: train[i][j]^test) 
// quantization
hcl.downsize(diff, hcl.uint(49))

Compiler & CADApplication & Programming

Automatic 
Synthesis & 

Tuning

Custom 
Accelerators

Hardware Design

HeteroCL (FPGA’19), 
T2S-Tensor (FCCM’19)

CGNet (NIPS’19), HadaNet
(CVPR’19), OCS (ICML‘19), 
GraphZoom (arXiv’19)

Tensaurus (HPCA’20), 
Celerity (IEEEMICRO’18)

PRIMAL (DAC’19), ASSIST
(DAC’19), QuickEST (FCCM’19) 
LAMDA (FCCM’19)

Algorithms Accelerators

Co-evolution of efficient ML and agile hardware design is generating 
a host of exciting research opportunities


