Algorithm-Accelerator Co-Design for Deep Learning Specialization

Zhiru Zhang School of ECE, Cornell University csl.cornell.edu/~zhiruz

EMC^2 Workshop @ NeurIPS, 12/13/2019

Need for Efficient Deep Learning

Strong demand for faster DNNs with better energy efficiency

Specialized DNN Processors are Ubiquitous

Apple (A12) Samsung (Exynos 9820) Huawei (Kirin 970) Qualcomm (Hexagon) Google (TPU) Microsoft (Brainwave) Xilinx (EC2 F1) Intel (FPGAs, Nervana) AWS Offerings

Cloud

Embedded

Google (Edge TPU) Intel (Movidius) Deephi/Xilinx (Zynq) ARM (announced) Many Startups

Co-Design for Deep Learning Specialization

- DNN performance and efficiency remain a big challenge
- Specialization necessitates algorithm and hardware co-design

Topics of this Talk

Channel Gating Neural Networks

Exploiting Dynamic Sparsity

Channel Gating Neural Networks

Weizhe Hua, Yuan Zhou, Christopher De Sa, Zhiru Zhang, Edward G. Suh Conference on Neural Information Processing Systems (NeurIPS), December 2019

Boosting the Performance of CNN Accelerators with Dynamic Fine-Grained Channel Gating

Weizhe Hua, Yuan Zhou, Christopher De Sa, Zhiru Zhang, Edward G. Suh International Symposium on Microarchitecture (MICRO), October 2019

Static Pruning for DNNs

- Sparse pruning (fine-grain) makes the model unstructured
- Group conv (coarse-grain) often incurs nontrivial accuracy loss
- Inference time of pruned model is agonistic to the actual input

Dynamic Pruning using Input-Dependent Properties?

Human visual recognition focuses on salient regions

Basic Idea: dynamically reduce compute effort in unimportant regions of input features

Image

Importance

Channel Gating for CNNs: High-Level Ideas

For each pixel in an output feature map:

- 1. Estimate its "importance" from partial layer computation
- 2. Skip remaining computation if deemed "unimportant"

Dynamic pruning exploits input-dependent characteristics **Fined-grained pruning** avoids overly aggressive compression that degrades accuracy

- Approximating output features with partial sums
 - Partial sum and final convolution result are often highly correlated in CNNs

partial sum = $\sum_{k=0}^{p} w^k x^k$; final sum = $\sum_{k=0}^{c} w^k x^k$

Correlation(partial sum, final sum) = **1.00**

- Approximating output features with partial sums
 - Partial sum and final convolution result are often highly correlated in CNNs

partial sum = $\sum_{k=0}^{p} w^k x^k$; final sum = $\sum_{k=0}^{c} w^k x^k$

Correlation(partial sum, final sum) = **0.86**

- Approximating output features with partial sums
 - Partial sum and final convolution result are often highly correlated in CNNs

partial sum = $\sum_{k=0}^{p} w^k x^k$; final sum = $\sum_{k=0}^{c} w^k x^k$

Correlation(partial sum, final sum) = 0.72

- Approximating output features with partial sums
 - Partial sum and final convolution result are often highly correlated in CNNs

partial sum = $\sum_{k=0}^{p} w^k x^k$; final sum = $\sum_{k=0}^{c} w^k x^k$

Correlation(partial sum, final sum) = 0.56

Conv Layer with Channel Gating

- 1. Obtain partial sum by performing convolution over the first *p* input channels (**base path**)
- 2. The gate outputs a binary decision by comparing partial sum with a learnable threshold
- 3. Skip convolution over remaining *r* channels if decision = 0 (**conditional path**)

Training Channel Gating Networks

- Single-pass training to learn effective gating policy
 - Each building block in the training computation graph must be differentiable

Results on CIFAR-10

ResNet-18	Base path Fraction	Test Error	FLOPs Saved
Baseline	1	5.4%	-
Channel Gating	1/8	5.44%	81.8% (5X+ reduction)
Channel Gating	1/16	5.96%	87.4% (~8X reduction)

Channel Gating Composes with Grouping and Shuffling

More Results on CIFAR-10

Channel gating applies to a variety of DNN models

Baseline	# of Groups	Target Threshold	Top-1 Error Baseline (%)	Top-1 Error Pruned (%)	Top-1 Accu. Drop (%)	FLOP Reduction
ResNet-18	8	2.0	5.40	5.44	0.04	5.49×
	16	3.0	5.40	5.96	0.56	7.95 imes
Binary VGG-11	8	1.0	16.85	16.95	0.10	3.02×
	8	1.5	16.85	17.10	0.25	3.80 imes
VGG-16	8	1.0	7.20	7.12	-0.08	3.41×
	8	2.0	7.20	7.59	0.39	5.10 imes
MobileNetV1	8	1.0	12.15	12.44	0.29	2.88 imes
	8	2.0	12.15	12.80	0.65	3.80 imes

Results on ImageNet

AlexNet	Dynamic	Test Error (Top 5)	FLOP Reduction
Baseline	/	19.4%	1x
SnaPEA (ISCA'18)	Y	30.4%	2.11x
Channel Gating	Y	20.0%	2.65 ×

ResNet-18	Dynamic	Test Error (Top 1)	FLOP Reduction
Baseline	/	30.8%	1x
Soft Filter Pruning (IJCAI'18)	Ν	32.9%	1.72x
Network Slimming (ICCV'17)	Ν	32.8%	1.39x
Collaborative Layers (CVPR'17)	Y	33.7%	1.53x
Discrimination-aware Pruning (NIPS'18)	Ν	32.7%	1.85x
Channel Gating	Y	31.7%	2.03 x
Channel Gating + KD	Y	31.0%	2.82 x

Sampled Feature Convolution in Conditional Path

- Compute in conditional path is sparse
 - Output activations are sparse
 - Their spatial locations vary dynamically
- But regularity is preserved along channel dimension
 - Per output activation, the input channels in the conditional path (X_r) are either used altogether or entirely skipped

Input channels

Accelerator Architecture for Channel Gating Networks (CGNet)

- Base (dense) & conditional (sparse) paths reuse the same systolic array
- The whole accelerator is designed in HLS C++ (by two PhD students)

Preliminary ASIC Evaluation (8-bit ResNet-18 on ImageNet)

	ASI	C	Nvidia	Intel i7 7700k	
Platform	Baseline	CGNet	GTX 1080Ti		
Freq. (MHz)	800	800	1923	4200	
Power (Watt)	0.202	0.256	225	91	
ImageNet Throughput (fps)	253.8	580.6	1563.7	13.8	
Energy/frame (mJ)	0.796	0.441	143.9	6594.2	

CGNet is 2.3× faster with 1.8× higher energy efficiency compared to a baseline accelerator w/o dynamic pruning (~20% area overhead)

Ongoing Work: Dynamic Quantization with Precision Gating

Precision Gating (PG): Preliminary Results

	Ours				Baselines						
	Precision Gating				UQ PACT Fix-Thresho			esholo	1		
	B/B_{hb}	Sp.	B_{avg}	Acc	Bits	Acc.	Acc.	B/B_{hb}	Sp.	B_{avg}	Acc.
ShiftNet-20	5/3	55.5	3.9	89.1	8	89.1	89.0	5/3	48.8	4.0	74.3
CIFAR-10	5/3	96.3	3.1	88.6	4	87.3	87.5	5/3	67.8	3.6	67.0
(fp 89.4%)	3/1	71.9	1.6	84.5	2	77.8	82.9	3/1	10.1	2.8	64.3
ResNet-18	4/3	78.2	3.2	91.7	8	91.6	91.2	4/3	58.7	3.4	88.3
CIFAR-10	3/2	90.1	2.1	91.2	4	91.1	90.9	3/2	71.0	2.3	74.2
(fp 91.7%)	2/1	71.5	1.3	90.6	2	84.0	90.1	2/1	21.6	1.8	71.9
ShuffleNet	6/4	57.2	4.8	59.7	8	59.1	59.1	6/4	52.6	4.9	33.6
ImageNet	6/4	62.2	4.7	59.3	6	57.8	57.1	6/4	58.5	4.8	32.7
(fp 59.0%)	5/3	41.9	4.1	58.0	5	57.0	56.6	5/3	40.4	4.2	27.7

- Comparing PG against prediction-based execution (PBE) [Song et al. ISCA'18]
 - PBE does zero prediction with fixed threshold

-
$$B_{avg} = B_{hb} + (1 - Sp\%) imes (B - B_{hb})$$

 Using a similar bitwidth, PG is 25+% more accurate than PBE on ShuffleNet for ImageNet

Outlier Channel Splitting

Improving DNN Quantization without Re-training

Improving Neural Network Quantization without Retraining Using Outlier Channel Splitting

Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Christopher De Sa, Zhiru Zhang International Conf. on Machine Learning (ICML), June 2019

https://github.com/cornell-zhang/dnn-quant-ocs

Quantization without Training Data

DNN quantization techniques that require training are often discouraged by the current ML service model

- Reasons to prefer data-free quantization:
 - 1. ML providers typically cannot access customer training data
 - 2. Customer is using a pre-trained off-the-shelf model
 - 3. Customer is unwilling to retrain a **legacy model**
 - 4. Customer lacks the expertise for quantization training

The Outlier Problem

- DNN weights and activations are distributed in a bell curve that peaks near zero
 - Most values are close to zero, rare outliers are large

Prior Arts on Addressing Outliers

Clipping

Sung *arXiv'15*, Shin *ICASSP'16*, Migacz *GTC'17*, Banner *arXiv'18*

- + Reduces quantization noise
- + Used in industry solutions (TensorRT)
- Distorts outliers, accuracy loss

Outlier-Aware Quantization

Park ECCV'18, Park ISCA'18

- + Reduces quantization noise
- + Preserves outlier values
- Requires additional sparse hardware

Our Proposal: Outlier Channel Splitting (OCS)

- OCS splits outlier weights, halving their values
 - The network remains functionally equivalent
 - But affected outliers are moved toward center of the distribution
 - Example: Duplicate node y_2 to halve the weight w_2

OCS vs. Prior Arts

- Improves quantization without retraining
- Outperforms existing methods with negligible size overhead (<2%) in both CNNs and RNNs
- Applies to both commodity CPUs/GPUs and custom accelerators

OCS Results on CNN Weights

Network	Wt.	C	lip	Clip	OC	S +		
(Float Acc.)	Bits				CI	ip 🛛		
		None MSE	ACIQ KL	Best	0.01	0.02		
	6	70.8 71.3	71.2 63.2	71.3	71.8	71.8		
(73.4)	5	63.1 66.9	61.2 62.7	66.9	68.8	69.5		
(73.4)	4	0.2 53.5	34.2 59.4	59.4	63.8	63.8		
RecNet-50	6	72.9 73.5	74.3 71.6	74.3	74.8	74.8		
(76.1)	5	14.5 69.1	69.9 69.4	69.9	71.0	71.9		
(70.1)	4	0.1 45.0	33.2 62.9	62.9	66.2	67.1		
DansaNat-121	6	71.0 71.4	71.1 60.7	71.4	73.2	73.1		
(74 A)	5	46.9 65.4	61.4 54.6	65.4	70.0	70.7		
(74.4)	4	0.4 33.3	25.2 42.6	42.6	52.7	56.5		
Incontion_\/3	6	58.3 66.2	62.3 63.0	66.2	70.5	71.7		
(75.0)	5	0.5 30.4	29.6 40.5	40.5	57.0	60.0		
(73.3)	4	0.1 0.2	0.1 1.6	1.6	2.1	2.3		
Best clip method is Blue = +1% or better vs. clip bolded								

Co-Design of DNN Algorithm & Hardware Yields Highest Efficiency

Related Research Efforts in My Group at Cornell

Co-evolution of efficient ML and agile hardware design is generating a host of exciting research opportunities