

Q8BERT: Quantized 8Bit BERT

Ofir Zafrir, Guy Boudoukh, Peter Izsak, Moshe Wasserblat Intel AI Lab

Motivation

- BERT¹ shown great improvement in many Natural Language Processing (NLP) tasks
- BERT computational characteristics pose a challenge to deployment in real-time production environments
- 8bit fixed point supporting hardware and

Training Graph

Effect of Quantization-Aware Training

- Compare to post training quantization
- Dynamic Quantization (DQ)

software exists and is already used in production environments

Method

- We propose to perform Quantization-Aware training⁴ (QAT) while fine-tuning BERT
- 8bit Linear quantization has can accelerate inference by up to 4× using 25% of the memory footprint³

Quantization-Aware Training

 Quantization-aware training is a method of training a model to be quantized at the inference stage The quantization at the output is removed where full precision is required

Results:				
Task	Metric	Baseline Score (STD)	DQ 8bit BERT Score (STD)	Relative Error
CoLA	MCC	58.48 (1.54)	56.74 (0.61)	-2.98%
MRPC	F1	90.00 (0.23)	87.88 (2.03)	-2.36%
MRPC-L	F1	90.86 (0.55)	88.18 (2.19)	-2.95%
QNLI	Acc.	90.30 (0.44)	89.34 (0.61)	-1.06%
QNLI-L	Acc.	91.66 (0.15)	88.38 (2.22)	-3.58%
QQP	F1	87.84 (0.19)	84.98 (0.97)	-3.26%
RTE	Acc.	69.70 (1.50)	63.32 (4.58)	-9.15%
SST-2	Acc.	92.36 (0.59)	91.04 (0.43)	-1.43%
STS-B	PCC	89.62 (0.31)	87.66 (0.41)	-2.19%
STS-B-L	PCC	90.34 (0.21)	83.04 (5.71)	-8.08%
SQuADv1.1	F1	88.46 (0.15)	80.02 (2.38)	-9.54%

Conclusion

• We have presented a method for quantizing BERT GEMM operations to 8bit for a variety of NLP tasks with minimum

• Fake quantization operation simulates the rounding effect of quantization

Quantization Scheme

We use symmetric linear quantization quantizing both weights and activations to 8bit Integers:

$$Quant(x|S^x, M) \coloneqq Clamp([x \times S^x], -M, M)$$

 $Clamp(x, a, b) = \min(max(x, a), b)$

 $M=2^{b-1}-1$

Weights' scaling factor:

This inference graph is the result of training with fake quantization

GLUE Benchmark and SQuAD Results

For each task we present the score of a baseline (FP32) model, of a QAT model quantized to 8bit. *L* means those models were trained with BERT-Large architecture.

loss in accuracy

- We compared our QAT method to Post-Training Quantization method and shown our method produces significantly better results.
- We made our work available for the community in the open-source library NLP Architect
- We encourage the community to use our quantization method to implement efficient BERT inference
- 1. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. ArXiv, abs/1810.04805, 2018.
- 2. Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.
- 3. V. Vanhoucke, A. Senior, and M. Z. Mao. Improving the speed of neural networks on cpus. In Deep Learning and Unsupervised Feature Learning Workshop, NIPS 2011, 2011.
- 4. B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and D. Kalenichenko. Quantization and training of neural networks for efficient integer-arithmetic-only inference. In Proceedings of the IEEE Conference on

Activations' scaling factor:

 $S^{x} = \frac{1}{EMA(max(|x|))}$

EMA – Exponential Moving Average

Straight-Through Estimator² is used to estimate the gradient of fake quantization:

 $\frac{\partial x^q}{\partial x} = \vec{1}$

Operations that require higher precision are kept in FP32 during training and inference

Task	Metric	Baseline Score (STD)	<i>Our</i> 8bit BERT Score (STD)	Relative Error
CoLA	MCC	58.48 (1.54)	58.48 (1.32)	0.00%
MRPC	F1	90.00 (0.23)	89.56 (0.18)	-0.49%
MRPC-L	F1	90.86 (0.55)	90.90 (0.29)	0.04%
QNLI	Acc.	90.30 (0.44)	90.62 (0.29)	0.35%
QNLI-L	Acc.	91.66 (0.15)	91.74 (0.36)	0.09%
QQP	F1	87.84 (0.19)	87.96 (0.35)	0.14%
RTE	Acc.	69.70 (1.50)	68.78 (3.52)	-1.32%
SST-2	Acc.	92.36 (0.59)	92.24 (0.27)	-0.13%
STS-B	PCC	89.62 (0.31)	89.04 (0.17)	-0.65%
STS-B-L	PCC	90.34 (0.21)	90.12 (0.13)	-0.24%
SQuADv1.1	F1	88.46 (0.15)	87.74 (0.15)	-0.81%

Computer Vision and Pattern Recognition, pages 2704–2713, 2018.

The 5th Workshop on Energy Efficient Machine Learning and Cognitive Computing @ NeurIPS 2019

ntel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are accurate. © 2019 Intel Corporation. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.