

AutoSlim: Towards One-Shot Architecture Search for Channel Numbers

Jiahui Yu, and Thomas Huang

University of Illinois at Urbana-Champaign

Presenter: Yuchen Fan

EMC2 Workshop @ NeurIPS 2019

Motivation

- What is the goal of this work?
 - We study how to set the number of channels in a neural network to achieve better accuracy under constrained resources (e.g., FLOPs, latency, memory footprint or model size).

• Why do we want to search #channels in a network?

- The most common constraints, i.e., latency, FLOPs and runtime memory footprint, are all bound to the number of channels.
- Despite its importance, the number of channels has been chosen mostly based on heuristics in previous methods.

Related Work

- Previous Methods for Setting #Channels
 - Heuristics
 - Network Pruning Methods
 - Neural Architecture Search (NAS) Methods based on Reinforcement Learning (RL)
- Limitation of Previous Methods
 - Training inside the Loop (training repeatedly): slow and inefficient

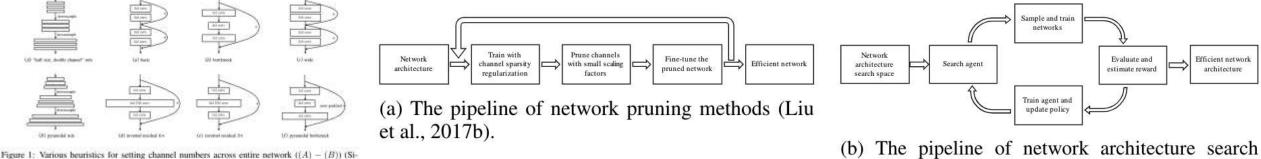
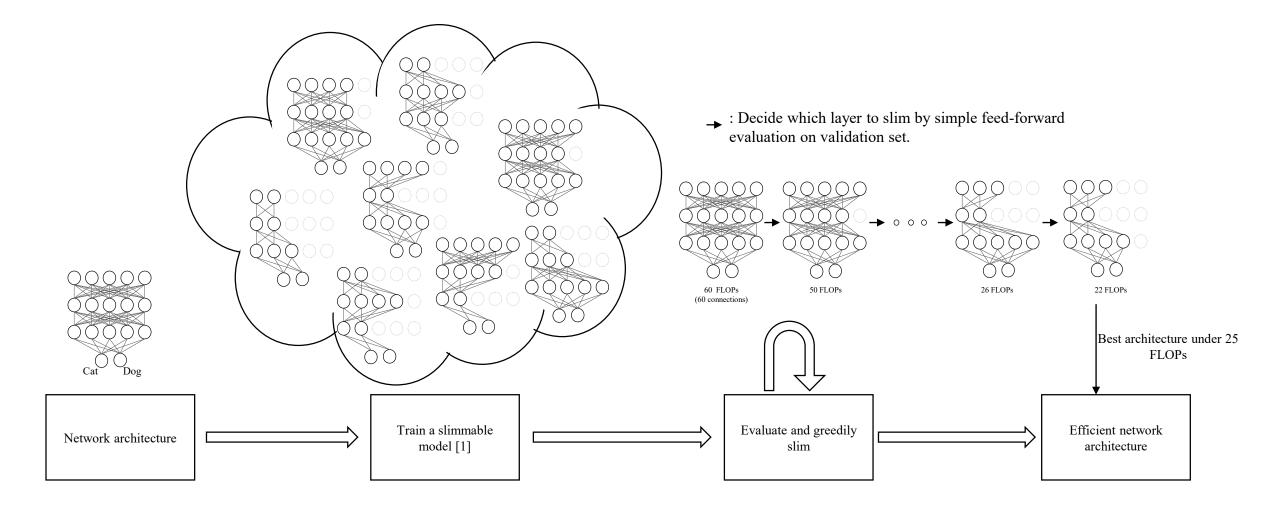
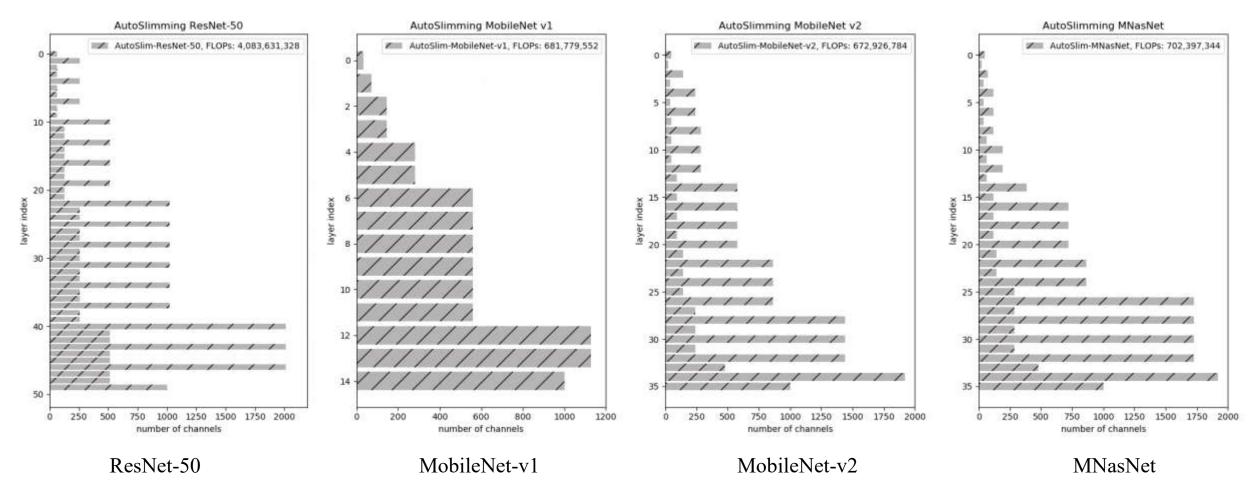



Figure 1: Various heuristics for setting channel numbers across entire network ((A - (B))) (Simonyan & Zisserman, 2014; Han et al., 2017; Zhang et al., 2017a), and inside network building blocks ((a) - (f)) (Sandler et al., 2018; He et al., 2016; Han et al., 2017; Zhang et al., 2017a; Tan et al., 2018; Cai et al., 2018).

3


methods (Tan et al., 2018; He et al., 2018)

AutoSlim

[1] Yu, Jiahui, et al. "Slimmable neural networks." International Conference on Learning Representations (ICLR), 2019

AutoSlim Examples

ImageNet Classification Results

Group	Model	Parameters	Memory	CPU Latency	FLOPs	Top-1 Err. (gai
	ShuffleNet v1 $1.0\times$	1.8M	4.9M	$46 \mathrm{ms}$	138M	32.6
	ShuffleNet v2 $1.0\times$	-	-	-	146M	30.6
	MobileNet v1 $0.5\times$	1.3M	$3.8\mathrm{M}$	33 ms	150M	36.7
	MobileNet v2 $0.75 \times$	2.6M	$8.5\mathrm{M}$	71 ms	209M	30.2
200M FLOPs	AMC-MobileNet v2	$2.3\mathrm{M}$	7.3M	68 ms	211M	$29.2_{\ (1.0)}$
	MNasNet $0.75 \times$	$3.1\mathrm{M}$	$7.9 \mathrm{M}$	$65 \mathrm{ms}$	216M	28.5
	AutoSlim-MobileNet v1	1.9M	4.2M	33ms	150M	$32.1_{(4.6)}$
	AutoSlim-MobileNet v2	$4.1 \mathrm{M}$	$9.1 \mathrm{M}$	$70 \mathrm{ms}$	207 M	$27.0_{(3.2)}$
	AutoSlim-MNasNet	4.0M	$7.5 \mathrm{M}$	62 ms	$217 \mathrm{M}$	$26.8_{(1.7)}$
300M FLOPs	ShuffleNet v1 $1.5\times$	$3.4\mathrm{M}$	8.0M	$60 \mathrm{ms}$	292M	28.5
	ShuffleNet v2 $1.5\times$	-	-	-	299M	27.4
	MobileNet v1 $0.75\times$	2.6M	$6.4 \mathrm{M}$	$48 \mathrm{ms}$	325M	31.6
	MobileNet v2 $1.0\times$	$3.5\mathrm{M}$	10.2M	$81 \mathrm{ms}$	300M	28.2
	NetAdapt-MobileNet v1	-	-	-	285M	29.9 (1.7)
	AMC-MobileNet v1	1.8M	$5.6 \mathrm{M}$	$46 \mathrm{ms}$	285M	$29.5_{(2.1)}$
	MNasNet $1.0 \times$	4.3M	$9.8 \mathrm{M}$	$76 \mathrm{ms}$	317M	26.0
	AutoSlim-MobileNet v1	4.0M	$6.8 \mathrm{M}$	43ms	325M	28.5 (3.1)
	AutoSlim-MobileNet v2	$5.7 \mathrm{M}$	$10.9 \mathrm{M}$	$77 \mathrm{ms}$	$305 \mathrm{M}$	$25.8_{(2.4)}$
	AutoSlim-MNasNet	6.0M	10.3M	71 ms	315M	$25.4_{(0.6)}$
500M FLOPs	ShuffleNet v1 2.0×	5.4M	11.6M	92ms	524M	26.3
	ShuffleNet v2 2.0×	-	-	-	$591 \mathrm{M}$	25.1
	MobileNet v1 $1.0 \times$	4.2M	9.3M	64 ms	569M	29.1
	MobileNet v2 $1.3\times$	5.3M	14.3M	106 ms	509M	25.6
	MNasNet $1.3 \times$	$6.8\mathrm{M}$	14.2M	95 ms	$535 \mathrm{M}$	24.5
	AutoSlim-MobileNet v1	4.6M	$9.5 \mathrm{M}$	$66 \mathrm{ms}$	572M	27.0 (2.1)
	AutoSlim-MobileNet v2	6.5M	14.8M	103 ms	505M	$24.6_{(1.0)}$
	${\it AutoSlim-MNasNet}$	8.3M	14.2M	95 ms	532M	24.5
Heavy Models	ResNet-50	$25.5 \mathrm{M}$	$36.6 \mathrm{M}$	$197 \mathrm{ms}$	4.1G	23.9
	ResNet-50 $0.75 \times$	$14.7 \mathrm{M}$	$23.1 \mathrm{M}$	$133 \mathrm{ms}$	2.3G	25.1
	ResNet-50 $0.5\times$	6.8M	$12.5 \mathrm{M}$	81 ms	1.1G	27.9
	ResNet-50 $0.25\times$	$1.9 \mathrm{M}$	4.8M	44 ms	278M	35.0
	Pruned-ResNet-50 [Yihui He et al.]	-	-	-	$\approx 2.0 G$	27.2
		23.1M	32.3M	165ms	3.0G	24.0
	AutoSlim-ResNet-50	20.6M	$27.6 \mathrm{M}$	$133 \mathrm{ms}$	2.0G	24.4
	Auto511m-ResNet-50	13.3M	$18.2 \mathrm{M}$	91ms	1.0G	26.0
		7.4M	11.5M	$69 \mathrm{ms}$	570M	27.8

ImageNet classification results with various network architectures. Blue indicates the network pruning methods, Cyan indicates the network architecture search methods and Red indicates our results using *AutoSlim*.

- Highlights (under same FLOPs):
 - AutoSlim-MobileNet-v2: 2.2% ↑, even 0.2% ↑
 than MNasNet (100× larger search cost).
 - AutoSlim-ResNet-50: without depthwise-conv, 1.3% better than MobileNet-v1.
- Code and Pretrained Models:

https://github.com/JiahuiYu/slimmable_networks

Thanks! Any Questions?