
Exploring Bit-Slice Sparsity in Deep Neural Networks for Efficient ReRAM-Based Deployment

Jingyang Zhang¹, Huanrui Yang¹, Fan Chen¹, Yitu Wang², Hai Li¹

¹Duke University, ²Fudan University

EMC2 Workshop @ NeurIPS 2019

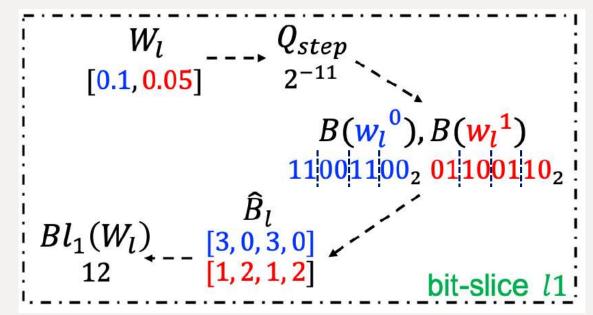
Motivation: ReRAM-based DNN accelerator

Two-order magnitude advantage in energy, performance and chip footprint

- High bit-resolution ADC accounts for >60% power and >30% area
 - ADC resolution dictated by accumulated currents on bitlines: need sparsity in G
 - Limited cell bit density: each XB only holds 2 bits (bit-slice) of the weight
 - Need higher sparsity among bit-slice

 $\begin{bmatrix} 0 & w_1 & 0 \\ 0 & 0 & w_2 \\ w_0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 11 & 00 & 10 & 00 \end{bmatrix}_2$ Weight sparsity Bit-slice sparsity

Canziani, Alfredo, Adam Paszke, and Eugenio Culurciello. "An analysis of deep neural network models for practical applications." *arXiv preprint arXiv:1605.07678* (2016). A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu, R. S. Williams, and V. Srikumar. Isaac: A convolutional neural network accelerator with in-situ analog arithmetic in crossbars . In Proceedings of ISCA, 2016.


Bit-slice L1 for dynamic fixed-point quantization

• Dynamic range scaling (to [0,1])

 $S(W_l) = \lceil \log_2(\max_{w_l^i \in W_l}(|w_l^i|)) \rceil,$

N-bit uniform quantization

$$Q_{step} = 2^{S(W_l) - n}, \quad B(w_l^i) = \lfloor \frac{w_l^i}{Q_{step}} \rfloor.$$

• L1 regularization over all bit-slices

$$B(w_l^i) = \sum_{k=0}^3 \hat{B}_l^{i,k} \cdot 2^{2k} \quad B\ell_1(W_l) := \sum_{i,k} \hat{B}_l^{i,k}.$$

Training routine

- Dynamic range recovery $Q(w_l^i) = B(w_l^i) \cdot Q_{step}$
- Training routine
 - FP and BP with quantized weight
 - Gradient update on full-precision weight
 - Add Bit-slice L1 to the objective

$$q^{(t)} = Q(w_l^{(t)}),$$

full-precision $Q(w_l^{(t)})$ $w_i^{(t)}$ quantized bit-slice l1 $Bl_1(W_l)$

 $w_l^{(t+1)} = q^{(t)} - lr \times (\nabla_q \mathcal{L}_{CE}(q^{(t)}) + \alpha \nabla_q B\ell_1(q^{(t)}))$

Improving the bit-slice sparsity

• Up to 2x less nonzero bit-slices than traditional L1

Method	Accuracy	Ratio of non-zero wights						
		$\hat{B^3}$	$\hat{B^2}$	$\hat{B^1}$	$\hat{B^0}$	Average		
Pruned	97.99%	1.08%	5.87%	8.42%	17.42%	8.20±5.94%		
$rac{\ell_1}{\mathrm{B}\ell_1}$	97.99% 97.67%	1.19% 0.84%	5.21% 4.02%	7.01% 4.27%	11.36% 9.58%	6.19±3.65% 4.68±3.14%		

		Ta	ble 2: Res	sults on CII	FAR-10				
		Accuracy	Ratio of non-zero wights						
Model	Method		$\hat{B^3}$	$\hat{B^2}$	$\hat{B^1}$	$\hat{B^0}$	Average		
VGG-11	Pruned	88.93%	0.86%	28.30%	34.14%	33.39%	24.17±13.65%		
	$\overset{\ell_1}{\overset{B\ell_1}{B\ell_1}}$	89.39% 89.33%	0.39% 0.21%	9.37% 3.57%	18.43% 7.09%	22.19% 10.71%	12.59±8.45% 5.40±3.92%		
ResNet-20	Pruned	89.22%	1.10%	8.07%	21.92%	43.96%	18.76±16.36%		
	$\overset{\ell_1}{B\ell_1}$	90.62% 89.66%	0.44% 0.31%	4.71% 3.34%	14.37% 11.99%	33.16% 31.39%	13.17±12.60% 11.76±12.12%		

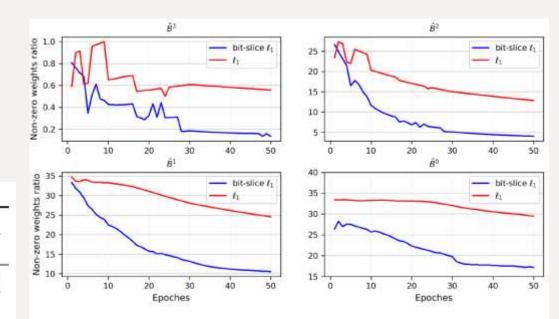


Figure 2: Bit-slice sparsity of VGG-11 on CIFAR-10 during training.

• Codes available at: <u>https://github.com/zjysteven/bitslice_sparsity_Duke</u>

Reducing ADC overhead

- High sparsity in bit-slices enables the use of low-resolution ADC
- Low resolution reduces ADC overhead
- Simulation results for mapping to 128x128 ReRAM XBs

Table 3: ADC Overhead Saving with Bit-Slice Sparsity							
	w/o Bit-Slice Sparsity	w/ Bit-Slice Sparsity					
	Resolution	Resolution	Energy Saving	Speedup	Area Saving		
XB_3	8 bit	1 bit	$28.4 \times$	$8 \times$	$2 \times$		
$XB_{2,1,0}$	8 bit	3 bit	$14.2 \times$	$2.67 \times$	$2 \times$		

Table 2: ADC Overhead Coving with Dit Clica Coordina

