

Exploring Bit-Slice Sparsity in Deep Neural Networks for Efficient ReRAM-Based Deployment

Jingyang Zhang¹, Huanrui Yang¹, Fan Chen¹, Yitu Wang², Hai Li¹ ¹Duke University, ²Fudan University

Motivation

Results

• Deep Neural Network (DNN) models are powerful, but are costly to deploy.

Image Classification on ImageNet

• Significant improvement on bit-slice sparsity

- Resistive random-access memory (ReRAM)-based DNN accelerators (Shafiee et al. 2016, Song et al. 2017)
 - In-situ matrix-vector multiplications
 - Two-order magnitude advantage in energy, performance and chip footprint

		Ta	ble 2: Res	sults on CII	FAR-10				
			Ratio of non-zero wights						
Model	Method	Accuracy	$\hat{B^3}$	$\hat{B^2}$	$\hat{B^1}$	$\hat{B^0}$	Average		
VGG-11	Pruned	88.93%	0.86%	28.30%	34.14%	33.39%	24.17±13.65%		
	$\begin{array}{c} \ell_1 \\ B\ell_1 \end{array}$	89.39% 89.33%	0.39% 0.21%	9.37% 3.57%	18.43% 7.09%	22.19% 10.71%	12.59±8.45% 5.40±3.92%		
ResNet-20	Pruned	89.22%	1.10%	8.07%	21.92%	43.96%	18.76±16.36%		
	$\ell_1 \\ \mathbf{B}\ell_1$	90.62% 89.66%	0.44% 0.31%	4.71% 3.34%	14.37% 11.99%	33.16% 31.39%	13.17±12.60% 11.76 ± 12.12%		

Figure 2: Bit-slice sparsity of VGG-11 on CIFAR-10 during training.

- Reducing ADC overhead on ReRAM-based accelerators
 - Map to 128 x 128 ReRAM crossbars (XBs)

Table 3: ADC Overhead Saving with Bit-Slice Sparsity										
	w/o Bit-Slice Sparsity	w/ Bit-Slice Sparsity								
	Resolution	Resolution	Energy Saving	Speedup	Area Saving					
XB ₃	8 bit	1 bit	$28.4 \times$	$8 \times$	$2 \times$					
$XB_{2,1,0}$	8 bit	3 bit	$14.2 \times$	$2.67 \times$	$2 \times$					

Codes available at: https://github.com/zjysteven/ bitslice_sparsity

Methods (cont'd)

Conclusion

(a) Multiply-Accumulate operation

(b) Vector-Matrix Multiplier

- Challenges of ReRAM-based accelerators
- Limited cell bit density: operands (i.e. weights) are bit-sliced across multiple ReRAM bitlines
- High bit-resolution ADC accounts for high power (>60%) and area (>30%) overhead
- ADC resolution dictated by accumulated currents on bitlines
- Need *higher sparsity in each bit-slice* to reduce the accumulated current on bitlines, therefore reducing ADC overhead

Methods

- Dynamic fixed-point quantization
 - For each layer, preserve dynamic range

- Bit-slice L1
- Binary representation of the quantized weight
- Slice into 2-bit slices
- L1 regularization across all bit-slices of all elements within a weight matrix/tensor

 $B(w_l^i) = \sum_{k=0}^{3} \hat{B}_l^{i,k} \cdot 2^{2k} \qquad B\ell_1(W_l) := \sum_{i,k} \hat{B}_l^{i,k}.$ $\begin{bmatrix} W_l & & Q_{step} \\ 0.1, 0.05 \end{bmatrix} \xrightarrow{2^{-11}} & & B(w_l^0), B(w_l^1) \\ & & 11001100_2 \ 01100110_2 \\ Bl_1(W_l) & & \begin{bmatrix} \hat{B}_l & & & \\ 12 & & & \begin{bmatrix} 3, 0, 3, 0 \end{bmatrix} \\ & & 12 \end{bmatrix} \xrightarrow{k} \begin{bmatrix} 1, 2, 1, 2 \end{bmatrix} \xrightarrow{k} \begin{bmatrix} bit-slice \ l 1 \end{bmatrix}$

- Overall training routine
- Forward and backward pass with quantized weight, gradient update on full-precision weight
 Add bit-slice L1 to the objective

- We propose *bit-slice L1* regularizer, the first algorithm to induce bit-slice sparsity during the training of dynamic fixed-point DNNs
- *Up to 2x or more* sparsity improvement on bit slices comparing to traditional L1 regularizer
- When deployed on ReRAM-based accelerator, the achieved bit-slice sparsity allows the ADC resolution to be *reduced to 1-bit* of the most significant bit-slice and *down to 3-bit* for the others bits, which significantly reduces power and area overhead.

Acknowledgement

This work was supported in part by NSF CNS-1822085 and NSF CSR-1717885.

• Uniform n-bit quantization after scaling

 $Q_{step} = 2^{S(W_l) - n}, \qquad B(w_l^i) = \lfloor \frac{w_l^i}{Q_{step}} \rfloor.$

- $B(w_l^i)$ will be stored on ReRAM crossbar
- Dynamic range recovery

 $Q(w_l^i) = B(w_l^i) \cdot Q_{step}$

- Recovery can be done efficiently with shifting
- $Q(w_l^i)$ will be used for computation

 $q^{(t)} = Q(w_l^{(t)}),$

 $w_l^{(t+1)} = q^{(t)} - lr \times (\nabla_q \mathcal{L}_{CE}(q^{(t)}) + \alpha \nabla_q B\ell_1(q^{(t)}))$

References

•

•

•

- A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P.
 Strachan, M. Hu, R. S. Williams, and V. Srikumar. Isaac: A convolutional neural network accelerator with in-situ analog arithmetic in crossbars . In Proceedings of ISCA, 2016.
- L. Song, X. Qian, H. Li, and Y. Chen. Pipelayer: A pipelined rerambased accelerator for deep learning. . In Proceedings of HPCA, 2017.
- T. Yang, H. Cheng, C. Yang, I. Tseng, H. Hu, H. Chang, and H. Li. Sparse reram engine: Joint exploration of activation and weight sparsity in compressed neural networks. In Proceedings of ISCA, 2019.
- P. Gysel. Ristretto: Hardware-oriented approximation of convolutional neural networks. arXiv preprint arXiv:1605.06402, 2016.
- M. Saberi, R. Lotfi, K. Mafinezhad, and W. A. Serdijn. Analysis of power consumption and linearity in capacitive digital-to-analog converters used in successive approximation adcs. IEEE Transactions on Circuits and Systems I: Regular Papers, 2011.

The 5th Workshop on Energy Efficient Machine Learning and Cognitive Computing @ NeurIPS 2019

