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Motivation

* Deep Neural Network (DNN) models are powertful, * Significant improvement on bit-slice sparsity

but are costly to deploy. Table 1: Results on MNIST
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* In-situ matrix-vector multiplications

* Two-order magnitude advantage in energy,

, , * Reducing ADC overhead on ReRAM-based accelerators
performance and chip footprint

* Map to 128 x 128 ReRAM crossbars (XBs)
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* Challenges of ReRAM-based accelerators

* Limited cell bit density: operands (1.e. weights)
are bit-sliced across multiple ReRAM bitlines

* High bit-resolution ADC accounts for high
power (>60%) and area (>30%) overhead

* ADC resolution dictated by accumulated currents
on bitlines

* Need higher sparsity in each bit-slice to reduce the
accumulated current on bitlines, therefore reducing

ADC overhead

* Dynamic fixed-point quantization

* For each layer, preserve dynamic range

S(W1) = [logy( max (Jw;|))].
’wf eW,
* Uniform n-bit quantization after scaling
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. B(Wli) will be stored on ReRAM crossbar

* Dynamic range recovery

Q(wf) — B(w}) - Qstep

* Recovery can be done efficiently with shifting

Qstep — QS(HFI)_H:J B(wf) — \_

¢« ( (Wli) will be used for computation
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Methods (cont’d)

Conclusion

* Bit-slice L1
* Binary representation of the quantized weight
* Slice into 2-bit slices

* L1 regularization across all bit-slices of all
clements within a weight matrix/tensor
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* Opverall training routine

* Forward and backward pass with quantized
weight, gradient update on full-precision weight

* Add bit-slice L1 to the objective
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. We propose bit-slice L1 regularizer, the first
algorithm to induce bit-slice sparsity during the
training of dynamic fixed-point DNNs

. Up to 2x or more sparsity improvement on bit
slices comparing to traditional L1 regularizer

. When deployed on ReRAM-based accelerator,
the achieved bit-slice sparsity allows the ADC
resolution to be reduced to 1-bit of the most
significant bit-slice and down to 3-bit for the
others bits, which significantly reduces power
and area overhead.
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