Energy-Aware Neural Architecture Optimization With Splitting Steepest Descent

- Dilin Wang¹, Lemeng Wu¹, Meng Li², Vikas Chandra², Qiang Liu¹
 - ¹ UT Austin ² Facebook
 - EMC2 Workshop @ NeurIPS 2019

Splitting yields adaptive net structure optimization

<u>Questions</u>

- Why splitting?
- What neurons should be split first?
- How to split a neuron optimally?

be split first? optimally?

Intuition: escaping local minima

A simple network: $\mathcal{L}(\theta) := \mathbb{E}_{x \sim D} \left| \Phi(\sigma(\theta, x)) \right|.$ • Splitting θ into m copies $\{w_i, \theta_i\}_{i=1}^m$:

Splitting Steepest Descent

• How to choose m and $\{\theta_i, w_i\}$ optimally? $\min_{m,\{\theta_i,w_i\}_{i=1}^m} \left\{ \mathcal{L}(\{\theta_i,w_i\}) - \mathcal{L}(\theta) \quad \text{s.}$

Optimal splitting strategy

 $\lambda_{\min}S(\theta) \ge 0$, no splitting

s.t.
$$||\theta_i - \theta||_2 \le \epsilon, \sum_{i=1}^m w_i = 1, w_i > 0, \forall i$$

th
$$S(\theta) = \mathbb{E}_{x \sim D} \left[\nabla_{\sigma} \Phi(\sigma(\theta, x)) \ \nabla^{2}_{\theta\theta} \sigma(\theta, x) \right]$$

Splitting-matrix

$\lambda_{\min}S(\theta) < 0, \quad m = 2, \ \theta_1 = \theta + \epsilon v_{\min}(S(\theta)), \ \theta_2 = \theta - \epsilon v_{\min}(S(\theta)), \ w_1 = w_2 = 1/2.$

Our Algorithm

Training time

Image Classification Results using MobileNetV1

Results on CIFAR100

Results on ImageNet

Iodel	MACs (G)	Top-1 Accuracy	Top-5 Accuracy
IobileNetV1 (1.0x)	0.569	72.93	91.14
plitting-4	0.561	73.96	91.49
IobileNetV1 (0.75x)	0.317	70.25	89.49
MC (He et al., 2018)	0.301	70.50	89.30
plitting-3	0.292	71.47	89.67
IobileNetV1 (0.5x)	0.150	65.20	86.34
plitting-2	0.140	68.26	87.93
plitting-1	0.082	64.06	85.30
plitting-0 (seed)	0.059	59.20	81.82

Thank You!

