

Energy-Aware Neural Architecture Optimization with Splitting Steepest Descent

Dilin Wang¹, Lemeng Wu¹, Meng Li², Vikas Chandra², Qiang Liu¹ ¹ UT Austin ² Facebook

Neural architecture optimization

Splitting Yields Adaptive Net Structure Optimization

► Starting from a small net, gradually grow the net during training. ► Grow by "splitting" existing neurons into multiple off-springs.

Energy-aware splitting

► Our formulation $ig) eta_\ell \, \lambda_{\mathsf{min}}(\mathcal{S}(heta^\ell))$ min gain $\beta_{\ell} \in \{0,1\}$ s.t. < budget

Main algorithm

Why, when and how?

- ► Why splitting? Does splitting decrease the loss? How much?
- ► When to split? What neurons should be split first?
- ► How to split a neuron optimally? How many copies to split into?

Why & when: escaping local minima

Optimization view: the local optima in the low dimensional space can be turned into a saddle point in a higher dimensional of the augmented networks **Architecture view**: lower-dimensional space \rightarrow smaller networks;

finetuning

Experiments

Results on CIFAR100

► We apply splitting on a small version of MobileNetV1 Howard et al., 2017

higher-dimensional space \rightarrow larger networks

How: splitting steepest descent

Consider a single-neuron network

 $\mathcal{L}(\theta) := \mathbb{E}_{x \sim D}[\Phi(\sigma(\theta, x))],$

where $\Phi(\cdot)$ is the map from the output of the neuron to the final loss. \blacktriangleright Split θ into *m* off-springs: $\theta \rightarrow \{\theta_i, w_i\}_{i=1}^m$, we have,

$$\mathcal{L}(\{ heta_i, w_i\}) := \mathbb{E}_{x \sim D} \left[\Phi(\sum_{i=1}^m w_i \sigma(heta_i, x)) \right].$$

Smooth loss change:

$$\sum_{i=1} w_i = 1, ||\theta_i - \theta||_2 \le \epsilon, \forall i.$$

Deriving optimal splitting strategies

Structural descent at stable local minima

$$\min_{i \in \mathcal{N}} \left\{ \mathcal{L}_m(\{\theta_i, w_i\}) - \mathcal{L}(\theta), s.t. ||\theta_i - \theta|| \le \epsilon, \sum_{i=1}^m w_i = 1, w_i > 0. \right\} \quad (1)$$

Results on ImageNet

► MobileNetV1

Model	MACs (G)	Top-1 Accuracy	Top-5 Accuracy
MobileNetV1 (1.0x)	0.569	72.93	91.14
Splitting-4	0.561	73.96	91.49
MobileNetV1 (0.75x)	0.317	70.25	89.49
AMC He el al., 2018	0.301	70.50	89.30
Splitting-3	0.292	71.47	89.67
MobileNetV1 (0.5x)	0.150	65.20	86.34
Splitting-2	0.140	68.26	87.93
Splitting-1	0.082	64.06	85.30
Splitting-0 (seed)	0.059	59.20	81.82

► MobileNetV2

MACs (G) Top-1 Accuracy Top-5 Accuracy

 $m, \{\theta_i\}, \{w_i\}$ i=1

► The optimum of Eqn. 1 is determined by

$$\min_{\substack{m,\{\theta_i\},\{w_i\}}} \left\{ \mathcal{L}_m(\{\theta_i, w_i\}) - \mathcal{L}(\theta) \right\} = \frac{\epsilon^2}{2} \min\{\underbrace{\lambda_{\min}(S(\theta))}_{\text{splitting index}}, 0\} + \mathcal{O}(\epsilon^3),$$
with $S(\theta) = \mathbb{E}_{x \sim D} \left[\nabla_{\sigma} \Phi(\sigma(\theta, x)) \nabla^2_{\theta\theta} \sigma(\theta, x), \right]$

Splitting matrix where $\lambda_{\min}(S(\theta))$ denotes the minimum eigenvalue of $S(\theta)$.

Optimal splitting

- ▶ When $\lambda_{\min}(S(\theta)) \ge 0$, no splitting
- ▶ When $\lambda_{\min}(S(\theta)) < 0$:

$$m = 2, \quad \theta_1 = \theta + \epsilon v_{\min}(S(\theta)), \quad \theta_2 = \theta - \epsilon v_{\min}(S(\theta)), \quad w_1 = w_2 = 1/2.$$

The corresponding maximum decrease of loss is $\epsilon^2 \lambda_{\min}(S(\theta))/2$.

Model	MACs (G)	Top-1 Accuracy	Top-5 Accuracy
MobileNetV2 (1.0x)	0.300	72.04	90.57
Splitting-3	0.298	72.84	90.83
MobileNetV2 (0.75x)	0.209	69.80	89.60
AMC He et al., 2018	0.210	70.85	89.91
Splitting-2	0.208	71.76	90.07
MobileNetV2 (0.5x)	0.097	65.40	86.40
Splitting-1	0.095	66.53	87.00
Splitting-0 (seed)	0.039	55.61	79.55

Conclusion

- Incremental training with splitting gradient.
- ► Simple and fast, promising in practice.
- ► Opens a new dimension for energy-efficient NAS.

