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Neural architecture optimization

Splitting Yields Adaptive Net Structure Optimization

I Starting from a small net, gradually grow the net during training.

I Grow by “splitting” existing neurons into multiple off-springs.

Why, when and how?

I Why splitting? Does splitting decrease the loss? How much?

I When to split? What neurons should be split first?

I How to split a neuron optimally? How many copies to split into?

Why & when: escaping local minima

I Optimization view: the local optima in the low dimensional space can be
turned into a saddle point in a higher dimensional of the augmented networks

I Architecture view: lower-dimensional space → smaller networks;
higher-dimensional space → larger networks

How: splitting steepest descent

I Consider a single-neuron network

L(θ) := Ex∼D[Φ(σ(θ, x))],

where Φ(·) is the map from the output of the neuron to the final loss.
I Split θ into m off-springs:
θ → {θi,wi}m

i=1, we have,

L({θi,wi}) := Ex∼D

[
Φ(

m∑
i=1

wiσ(θi, x))

]
.

I Smooth loss change:∑
i=1

wi = 1, ||θi − θ||2 ≤ ε,∀i .

Deriving optimal splitting strategies

I Structural descent at stable local minima

min
m,{θi},{wi}

{
Lm({θi,wi})− L(θ), s.t.||θi − θ|| ≤ ε,

m∑
i=1

wi = 1,wi > 0.

}
(1)

I The optimum of Eqn. 1 is determined by

min
m,{θi},{wi}

{
Lm({θi,wi})− L(θ)

}
=
ε2

2
min{λmin(S(θ))︸ ︷︷ ︸

splitting index

, 0} +O(ε3),

with S(θ) = Ex∼D

[
∇σΦ(σ(θ, x))∇2

θθσ(θ, x),

]
︸ ︷︷ ︸

Splitting matrix

where λmin(S(θ)) denotes the minimum eigenvalue of S(θ).

Optimal splitting
I When λmin(S(θ)) ≥ 0, no splitting

I When λmin(S(θ)) < 0:

m = 2, θ1 = θ + εvmin(S(θ)), θ2 = θ − εvmin(S(θ)), w1 = w2 = 1/2.

The corresponding maximum decrease of loss is ε2λmin(S(θ))/2.

Energy-aware splitting

I Our formulation

min
β

n∑
`=1

β` λmin(S(θ`))︸ ︷︷ ︸
gain

s.t. β` ∈ {0, 1}
n∑
`=1

e`︸︷︷︸
flops

β` ≤ budget

Main algorithm

Experiments

Results on CIFAR100

I We apply splitting on a small version of MobileNetV1 Howard et al., 2017
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Results on ImageNet

I MobileNetV1

Model MACs (G) Top-1 Accuracy Top-5 Accuracy

MobileNetV1 (1.0x) 0.569 72.93 91.14
Splitting-4 0.561 73.96 91.49

MobileNetV1 (0.75x) 0.317 70.25 89.49
AMC He el al., 2018 0.301 70.50 89.30
Splitting-3 0.292 71.47 89.67

MobileNetV1 (0.5x) 0.150 65.20 86.34
Splitting-2 0.140 68.26 87.93

Splitting-1 0.082 64.06 85.30
Splitting-0 (seed) 0.059 59.20 81.82

I MobileNetV2

Model MACs (G) Top-1 Accuracy Top-5 Accuracy

MobileNetV2 (1.0x) 0.300 72.04 90.57
Splitting-3 0.298 72.84 90.83

MobileNetV2 (0.75x) 0.209 69.80 89.60
AMC He et al., 2018 0.210 70.85 89.91
Splitting-2 0.208 71.76 90.07

MobileNetV2 (0.5x) 0.097 65.40 86.40
Splitting-1 0.095 66.53 87.00

Splitting-0 (seed) 0.039 55.61 79.55

Conclusion

I Incremental training with splitting gradient.

I Simple and fast, promising in practice.

I Opens a new dimension for energy-efficient
NAS.
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