Pushing the limits of RNN Compression

Urmish Thakker, Igor Fedorov, Jesse Beu, Dibakar Gope, Chu Zhou, Ganesh Dasika,
Matthew Mattina

AI'M Research

Motivation & Overview

RNNSs power loT applications like wake-word detection, human
activity recognition (HAR) and predictive maintenance

loT devices have small storage capacity (2 KB-32 KB) and smaller
caches

Target compression factors of 16-30x (> 94% reduction In
parameters) to ensure these applications fit on loT devices.

State-of-the art techniques [4][5] lead to significant accuracy loss for
these compression factors

Kronecker Product (KP) achieves the best task accuracy for 16-30x
compression factors while simultaneously improving inference run-
time.

Introduction to Kronecker Products

Let A € R™xn B € RmIxnl gnd C € R™%xn2 then, the KP between B and
C Is given by
A=BXC
(bl,l.oc e bl’n.loc)
bml’l . C e b C

ml nl

B and C are referred to as Kronecker factors (KF) of Aand m =
mlxm?2 and n = n1lxn?2

If m =154, n =164, m1 =11, n1=41, m2 = 14, n2 = 4, we get 50X
compression!

We can use more than 2 KFs. Eg -
W=W1QRW2...Wn.

More n’s will lead to more compression!
Prior Work

Focused on training stability while increasing the size of the network
(Table 3, [1])

Compressed FC layers in CNNs [2] and did not measure the inference
run-time

Key questions that we answer

Can a RNN with matrix expressed as KP of smaller matrices maintain
baseline accuracy at high compression factors

How many number of KF matrices, n, should we choose?

What Is the impact on inference run-time when RNN matrices are
expressed as KP of KF matrices

Kronecker Product Recurrent Neural Network

Matrix-vector product when matrix iIs expressed as KP of 2 KF —
y=Ax=(B Q C)x = vec(CXBT), (1)
where X € Rnéxnl
What happens as n increases?
* Loss In training accuracy due to vanishing gradient issue

* |Increased Inference runtime as equation (1) is applied
recursively

Restrict the # of factors to 2!

Traditional RNN: h, = f (A X [x h, ,])

KPRNN: h,=f (B®C) X [x h, ,])
* B and C learned via back-propagation

* During inference, use equation 1 to get speed-up over baseline

Arm ML Research Lab

Results

Datasets — Image Recognition (MNIST, USPS), Key-word spotting
(Google KWS), HAR (Discovery)

Inference run-time measured on A53 core of HiKey Board

Benchmark

Compression Technique

Parameter

Baseline Small
Measured

Name Baseline Pruning LMF KP

Compression
Factor 10X 17x 13X

Accuracy (%) 87.5 96.5 974

Runtime (ms) . 0.7 0.7 1.8

Compression
Factor

Accuracy (%)

Runtime (ms)

Compression
Factor

Accuracy (%)

Runtime (ms) . 1.9 59 4.1

Compression
Factor 1X 4X Ox 8X

Accuracy (%) 08.8 91.2 88.5 89.5

Runtime (ms) 1.17 0.4

Runtime Improvement: KP improves the baseline runtime by 54%, 49%
and 66.59% for KWS, USPS and HARL.

Comparison with SB: Better accuracy by 10.94%, 2.3%, 7.7% and
1.97% for MNIST, HAR1, KWS and USPS

Comparison with Pruning: Better accuracy by 2%, 8.17%, 6.29% and
4.68% for MNIST, HAR1, KWS and USPS

Comparison with LMF: Better accuracy by 1.04%, 1.2%, 2.07% and
3.64% for MNIST, HAR1, KWS and USPS.

Conclusion

We show how to compress RNNs aggressively
(16-30x) while simultaneously preserving more

accuracy than any other state-of-the-art technique

[m] iy [m]
aF:

Full paper available on arxiv, scan this QR code for link

References

[1] Kronecker Recurrent Units

[2] Compression of fully-connected layer in neural network by kronecker
product

[3]http://www.mathcs.emory.edu/~nagy/courses/fall10/515/Kroneckerintr
o0.pdf

[4] To prune or not to prune

[5] Speeding up Convolutional Neural Networks with Low Rank
Expansions

0.375 0.28 0.6

