Pushing the limits of RNN Compression

Urmish Thakker, Igor Fedorov, Jesse Beu, Dibakar Gope, Chu Zhou, Ganesh Dasika, Matthew Mattina

CIM Research

Arm ML Research Lab

Motivation & Overview

- RNNs power IoT applications like wake-word detection, human activity recognition (HAR) and predictive maintenance
- IoT devices have small storage capacity (2 KB-32 KB) and smaller caches
- **Target compression factors of 16-30x** (> 94% reduction in *parameters*) to ensure these applications fit on IoT devices.
- State-of-the art techniques [4][5] lead to significant accuracy loss for these compression factors

Results

- Datasets Image Recognition (MNIST, USPS), Key-word spotting (Google KWS), HAR (Discovery)
- Inference run-time measured on A53 core of HiKey Board

Deficition NameFarameter MeasuredBaselineSmall BaselineFarameter SmallNameMeasuredBaselinePruningLMFKP		Benchmark Name	Parameter Measured	Baseline	Com	ompression Technique			
Baseline Pruning LMF KP					Small				
					Baseline	Pruning	LMF	KP	

Kronecker Product (KP) achieves the best task accuracy for 16-30x compression factors while simultaneously improving inference runtime.

Introduction to Kronecker Products

Let $A \in R^{m \times n}$, $B \in R^{m \times n + 1}$ and $C \in R^{m \times 2 \times n \times 2}$ then, the KP between B and C is given by

 $A = B \bigotimes C$ $A = \begin{pmatrix} b_{1,1} \circ C & \cdots & b_{1,n1} \circ C \\ \vdots & \ddots & \vdots & \\ b_{m1,1} & C & \cdots & b_{m1,n1} & C \end{pmatrix}$

- B and C are referred to as Kronecker factors (KF) of A and m = m1xm2 and n = n1xn2
- If m = 154, n = 164, m1 = 11, n1 = 41, m2 = 14, n2 = 4, we get 50x compression!
- We can use more than 2 KFs. Eg -

- Compression 13x **18**x 10x 17x Factor 1x**MNIST 98.4** 87.5 Accuracy (%) 99.4 96.5 97.4 0.7 0.7 6.3 1.8 4.6 Runtime (ms) Compression 20x 29x **30x** 28x $1\mathbf{x}$ Factor HAR1 91.2 88.9 82.9 91.9 89.9 Accuracy (%) 30 157 98 470 64 Runtime (ms) Compression 25x 24x 21x 16x $1\mathbf{x}$ Factor KWS 89.7 91.2 92.5 84.9 89.1 Accuracy (%) 5.9 4.1 17.5 26.81.9 Runtime (ms) Compression 8x 9x 4x**16x** 1xFactor USPS 93.2 91.2 88.5 89.5 98.8 Accuracy (%) 0.375 1.17 0.4 0.28 0.6 Runtime (ms)
- *Runtime Improvement*: KP improves the baseline runtime by 54%, 49% and 66.59% for KWS, USPS and HAR1.

- $W = W1 \otimes W2 \otimes \dots Wn.$
- More n's will lead to more compression!

Prior Work

- Focused on training stability while increasing the size of the network (Table 3, [1])
- Compressed FC layers in CNNs [2] and did not measure the inference run-time

Key questions that we answer

- Can a RNN with matrix expressed as KP of smaller matrices maintain baseline accuracy at high compression factors
- How many number of KF matrices, n, should we choose?
- What is the impact on inference run-time when RNN matrices are expressed as KP of KF matrices

Kronecker Product Recurrent Neural Network

Matrix-vector product when matrix is expressed as KP of 2 KF – $y = Ax = (B \otimes C)x = vec(CXB^T),$ (1)

- *Comparison with SB*: Better accuracy by 10.94%, 2.3%, 7.7% and 1.97% for MNIST, HAR1, KWS and USPS
- *Comparison with Pruning*: Better accuracy by 2%, 8.17%, 6.29% and 4.68% for MNIST, HAR1, KWS and USPS
- *Comparison with LMF*: Better accuracy by 1.04%, 1.2%, 2.07% and 3.64% for MNIST, HAR1, KWS and USPS.

Conclusion

We show how to compress RNNs aggressively (16-30x) while simultaneously preserving more accuracy than any other state-of-the-art technique

Full paper available on arxiv, scan this QR code for link

where $X \in R^{n2xn1}$

- What happens as n increases?
 - Loss in training accuracy due to vanishing gradient issue •
 - *Increased inference runtime* as equation (1) is applied recursively
- Restrict the # of factors to 2!
- Traditional RNN: $h_t = f (A \times [x \ h_t \ _1])$
- **KPRNN**: $\mathbf{h}_{t} = f((B \otimes C) \times [x \ h_{t-1}])$
 - B and C learned via back-propagation
 - During inference, use *equation 1* to get speed-up over baseline

References

[1] Kronecker Recurrent Units

[2] Compression of fully-connected layer in neural network by kronecker product

[3]http://www.mathcs.emory.edu/~nagy/courses/fall10/515/KroneckerIntr o.pdf

[4] To prune or not to prune

[5] Speeding up Convolutional Neural Networks with Low Rank Expansions

The 5th Workshop on Energy Efficient Machine Learning and Cognitive Computing @ NeurIPS 2019