
Arm ML Research Lab

Urmish Thakker, Igor Fedorov, Jesse Beu, Dibakar Gope, Chu Zhou, Ganesh Dasika ,
Matthew Mattina

Pushing the limits of RNN Compression

• RNNs power IoT applications like wake-word detection, human

activity recognition (HAR) and predictive maintenance

• IoT devices have small storage capacity (2 KB-32 KB) and smaller

caches

• Target compression factors of 16-30x (> 94% reduction in

parameters) to ensure these applications fit on IoT devices.

• State-of-the art techniques [4][5] lead to significant accuracy loss for

these compression factors

• Kronecker Product (KP) achieves the best task accuracy for 16-30x

compression factors while simultaneously improving inference run-

time.

Results

References

[1] Kronecker Recurrent Units

[2] Compression of fully-connected layer in neural network by kronecker

product

[3]http://www.mathcs.emory.edu/~nagy/courses/fall10/515/KroneckerIntr

o.pdf

[4] To prune or not to prune

[5] Speeding up Convolutional Neural Networks with Low Rank

Expansions

Introduction to Kronecker Products

• Let A ∈ 𝑅𝑚x𝑛, B ∈ 𝑅𝑚1x𝑛1𝑎𝑛𝑑 C ∈ 𝑅𝑚2x𝑛2 then, the KP between B and

C is given by

𝐴 = 𝐵 ⊗ 𝐶

𝐴 =
𝑏1,1 ∘ 𝐶 ⋯ 𝑏1, 𝑛1 ∘

𝐶
⋮ ⋱ ⋮

𝑏𝑚1,1 ∘ 𝐶 ⋯ 𝑏𝑚1, 𝑛1 ∘
𝐶

• B and C are referred to as Kronecker factors (KF) of A and m =

m1xm2 and n = n1xn2

• If m = 154, n =164, m1 = 11, n1=41, m2 = 14, n2 = 4, we get 50x

compression!

• We can use more than 2 KFs. Eg -

W = 𝑊1⊗𝑊2⊗….Wn.

• More n’s will lead to more compression!

Kronecker Product Recurrent Neural Network

Key questions that we answer

• Matrix-vector product when matrix is expressed as KP of 2 KF –

𝒚 = 𝑨𝒙 = 𝑩⊗ 𝑪 𝒙 = 𝒗𝒆𝒄 𝑪𝑿𝑩𝑻 , (1)

𝑤ℎ𝑒𝑟𝑒 𝑋 ∈ 𝑅n2xn1

• What happens as n increases?

• Loss in training accuracy due to vanishing gradient issue

• Increased inference runtime as equation (1) is applied

recursively

• Restrict the # of factors to 2!

• Traditional RNN: ht = 𝑓 𝐴 × 𝑥 ℎ𝑡 − 1

• KPRNN: 𝐡𝐭 = 𝒇 (𝑩⊗ 𝑪) × 𝒙 𝒉𝒕 − 𝟏

• B and C learned via back-propagation

• During inference, use equation 1 to get speed-up over baseline

Motivation & Overview

• Datasets – Image Recognition (MNIST, USPS), Key-word spotting

(Google KWS), HAR (Discovery)

• Inference run-time measured on A53 core of HiKey Board

• Runtime Improvement: KP improves the baseline runtime by 54%, 49%

and 66.59% for KWS, USPS and HAR1.

• Comparison with SB: Better accuracy by 10.94%, 2.3%, 7.7% and

1.97% for MNIST, HAR1, KWS and USPS

• Comparison with Pruning: Better accuracy by 2%, 8.17%, 6.29% and

4.68% for MNIST, HAR1, KWS and USPS

• Comparison with LMF: Better accuracy by 1.04%, 1.2%, 2.07% and

3.64% for MNIST, HAR1, KWS and USPS.

The 5th Workshop on Energy Efficient Machine Learning and Cognitive Computing @ NeurIPS 2019

Conclusion

We show how to compress RNNs aggressively

(16-30x) while simultaneously preserving more

accuracy than any other state-of-the-art technique

Full paper available on arxiv, scan this QR code for link

Prior Work

• Can a RNN with matrix expressed as KP of smaller matrices maintain

baseline accuracy at high compression factors

• How many number of KF matrices, n, should we choose?

• What is the impact on inference run-time when RNN matrices are

expressed as KP of KF matrices

• Focused on training stability while increasing the size of the network

(Table 3, [1])

• Compressed FC layers in CNNs [2] and did not measure the inference

run-time

Benchmark

Name

Parameter

Measured
Baseline

Compression Technique

Small

Baseline Pruning LMF KP

MNIST

Compression

Factor 1x 10x 17x 13x 18x

Accuracy (%) 99.4 87.5 96.5 97.4 98.4

Runtime (ms) 6.3 0.7 0.7 1.8 4.6

HAR1

Compression

Factor 1x 20x 29x 28x 30x

Accuracy (%) 91.9 88.9 82.9 89.9 91.2

Runtime (ms) 470 30 98 64 157

KWS

Compression

Factor 1x 16x 24x 21x 25x

Accuracy (%) 92.5 89.7 84.9 89.1 91.2

Runtime (ms) 26.8 1.9 5.9 4.1 17.5

USPS

Compression

Factor 1x 4x 9x 8x 16x

Accuracy (%) 98.8 91.2 88.5 89.5 93.2

Runtime (ms) 1.17 0.4 0.375 0.28 0.6

