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Large scale pre-trained Language Models are at the
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basis of many state-of-the-art approaches in NLP. The size

of these models (~ several hundred million parameters)
makes it difficult to use them in production or on device
(large memory footprint and slow inference). Moreover,
pre-training these large models have a huge environ-

mental cost.

We show that it is possible to reach similar perfor-
mances on downstream-tasks with much smaller Lan-
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Architecture and Initialization

* In most modern frameworks, matrix multiplications are highly optimized
and the hidden size has a small impact on computation efficiency. We

reduce the number of Transformer layers by 2 for fast
* We remove the segment embeddings and the pooler.

Inference.

» We leverage the common dimensionality between teacher and student

networks and initialize the student from the teacher.

Training: Knowledge Distillation Triple Loss

We train the student using a linear combination of 3 losses:

the dark knowledge.
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DistiIBERT reaches 97% of BERT’s perfor-
mance on GLUE.
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DistilBERT is 40% smaller and 60% faster
than BERT.
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the student and teacher.

Data and Compute

» Knowledge Distillation Loss: we used Softmax-temperature to reveal

» Masked Language Modeling Loss: the teacher’s initial training loss.
» Cosine Loss: it aligns the directions of the hidden state vectors of

Paper, Code and
Pre-trained Weights

https://github.com/huggingface/transformers

» We pre-train DistilBERT on the same corpus as the original BERT model: a concatenation of English

Wikipedia and Toronto Book Corpus.

 DistIIBERT was trained on 8 16GB V100 GPUs for ~90 hours.

Additional Results

Pre-training by knowledge distillation is a poweful general method that can
be applied to a range of different models (including models for Language
Understanding, Language Generation or multi-linguality).

The distillation losses account for a large
portion of the performance. Initialization is
key.
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DistiIBERT is a compelling alternative for on-de-
vice applications: light and fast. Further gains
could be obtained with quantization techniques.
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