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DistilBERT, a distilled version of BERT: smaller, 
faster cheaper and lighter

Victor SANH, Lysandre DEBUT, Julien CHAUMOND, Thomas WOLF
{victor, lysandre, julien, thomas}@huggingface.co

The 5th Workshop on Energy Efficient Machine Learning and Cognitive Computing @ NeurIPS 2019
December 2019

Large scale pre-trained Language Models are at the 
basis of many state-of-the-art approaches in NLP. The size 
of these models (~ several hundred million parameters) 
makes it difficult to use them in production or on device 
(large memory footprint and slow inference). Moreover, 
pre-training these large models have a huge environ-
mental cost.

We show that it is possible to reach similar perfor-
mances on downstream-tasks with much smaller Lan-
guage Models pre-trained with Knowledge Distillation. 
Trained with a triple loss, DistilBERT is 40% smaller and 
60% faster than BERT, while reaching 97% of its origi-
nal performance and being cheaper to train, making 
DistilBERT a competitive option for on-the-edge applica-
tions.
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We train the student using a linear combination of 3 losses:
   • Knowledge Distillation Loss: we used Softmax-temperature to reveal
     the dark knowledge.
   • Masked Language Modeling Loss: the teacher’s initial training loss.
   • Cosine Loss: it aligns the directions of the hidden state vectors of 
      the student and teacher.
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Architecture and Initialization • In most modern frameworks, matrix multiplications are highly optimized 
and the hidden size has a small impact on computation efficiency. We 
reduce the number of Transformer layers by 2 for fast inference.
• We remove the segment embeddings and the pooler.
• We leverage the common dimensionality between teacher and student 
networks and initialize the student from the teacher.

Training: Knowledge Distillation Triple Loss

Data and Compute
• We pre-train DistilBERT on the same corpus as the original BERT model: a concatenation of English
  Wikipedia and Toronto Book Corpus.
• DistilBERT was trained on 8 16GB V100 GPUs for ~90 hours.

Paper, Code and 
Pre-trained Weights

https://github.com/huggingface/transformers
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Variation on GLUE (macro-score)

-4,83-1,9-4,07-5,06

DistilBERT reaches 97% of BERT’s perfor-
mance on GLUE.

DistilBERT is 40% smaller and 60% faster 
than BERT.

Inference time is measured on a full pass of STS-B on CPU.

The distillation losses account for a large 
portion of the performance. Initialization is 
key.

Pre-training by knowledge distillation is a poweful general method that can 
be applied to a range of different models (including models for Language 
Understanding, Language Generation or multi-linguality).

DistilBERT is a compelling alternative for on-de-
vice applications: light and fast. Further gains 
could be obtained with quantization techniques.
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Additional Results
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