Trained Rank Pruning For Efficient Deep Neural Networks

Yuhui Xu¹, Yuxi Li¹, Shuai Zhang², Wei Wen³, Botao Wang², Wenrui Dai¹, Yingyong Qi², Yiran Chen³, Weiyao Lin¹ and Hongkai Xiong¹

¹Shanghai Jiao Tong University ²Qualcomm AI Research ³Duke University

Outline

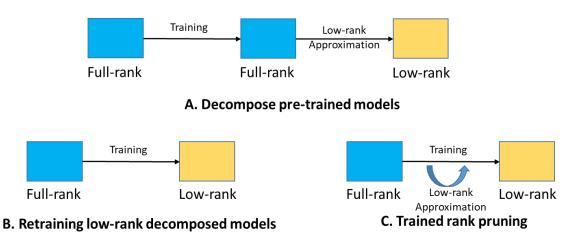
- Low Rank (LR) Models
 - Methods on obtaining LR models
 - Decompose a pre-trained model
 - Retrain a LR decomposed model
 - Challenges on existing methods

• Trained Rank Pruning

- Training LR model directly with 2 interleaved steps:
 - Step A: rank conditioning with nuclear norm constraint and sub-gradient
 - Step B: rank pruning with LR decomposition
- Experimental Results

LR Models

- Rank pruning with LR decomposition
- Decompose a pre-trained model
 - Small approximation errors can ripple a large prediction loss. Fine-tuning is required to recover some accuracy loss.
- Retrain low-rank decomposed model
 - Hard to select optimal rank for each layer to achieve good balance of model capacity and compression



Trained Rank Pruning

Our trained rank pruning method has 2 interleaved steps:

(A) Conventional SGD training with nuclear norm regularization and sub-gradient, conditioning the network to be LR compatible

• Nuclear norm constraint

$$min\left\{f(x;w) + \lambda \sum_{l=1}^{L} ||W||_{*}\right\}$$

• Sub-gradient descent[1]

$$g_{sub} = \Delta f + \lambda U_{tru} V_{tru}^T$$

where $W = U \sum V^T$ is the SVD decomposition and U_{tru} , V_{tru} are truncated U, V with rank(W).

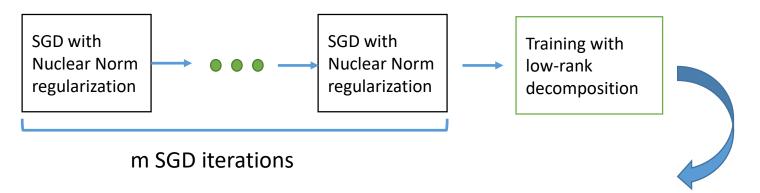
(B) Training with LR decomposition, obtaining the LR network with rank pruning

- -- forward: decompose original filters T into LR filters T_low;
- -- backward: update decomposed LR filters T_low with SGD and then substitute original filters.

[1] H. Avron, S. Kale, S. P. Kasiviswanathan, and V. Sindhwani. Efficient and practical stochastic subgradient descent for nuclear norm regularization. In ICML, 2012.

Trained Rank Pruning

• Step B is inserted into training process after every *m* SGD iterations of step A.



- Capable of generating LR model parameters with diverse optimal ranks.
- Applicable to most existing decompositions, i.e. channel-wise and spatial-wise decompositions.

Experimental Results

All comparison decomposition and pruning results here are finetuned to improve accuracy, while our methods results are from direct decomposition after training.

- TRP_spatial: our trained rank pruning method with spatial-wise decomposition;
- **TRP_channel**: our trained rank pruning method with channel-wise decomposition;
- Nu: nuclear norm regularization in training;
- **Speedup**: the reduction ratio of model FLOPs

Model	Top 1 (%)	Speed up	Method	Top1(%)	Speed up	Method	Top1(%)	Speed up
ResNet-20 (baseline)	91.74	$1.00 \times$	Baseline	69.10	$1.00 \times$	Baseline	75.90	$1.00 \times$
ResNet-20 (TRP_spatial)	90.12	1.97×	TRP_spatial	65.46	1.81×	TRP_spatial + Nu	72.69	2.30×
ResNet-20 (TRP_spatial + Nu)	90.50	2.17 ×	TRP_spatial + Nu	65.39	2.23×	TRP_spatial + Nu (diff hyper-param)	74.06	$1.80 \times$
ResNet-20 (Spatial-decomp)	88.13	1.41×	Spatial-decomp	63.1	1.41×	Spatial-decomp	71.80	$1.50 \times$
ResNet-20 (TRP_channel)	90.13	2.66×	TRP_channel	65.51	$2.60 \times$	Filter pruning-ICCV2017	72.04	1.58
ResNet-20 (TRP_channel + Nu)	90.62	2.84 ×	TRP_channel + Nu	65.34	3.18 ×	Thinet-TPAMI2018	72.03	2.26
ResNet-20 (Channel-decomp)	89.49	1.66×	Channel-decomp	62.80	$2.00 \times$	Table 3: Results of ResNet-50 on ImageNet.		

Table 1: Experiment results on CIFAR-10.

Table 2: Results of ResNet-18 on ImageNet.

On both CIFAR-10 and ImageNet datasets, it shows that our TRP methods can outperform other existing methods both in channel-wise decomposition and spatial-wise decomposition formats. It achieves better balance of accuracy and complexity.