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Decompose a pre-trained modelWhy Low-rank Decomposition?

• Among the factorization-based approaches, low-rank approximation has been widely 
adopted because of its solid theoretical rationale and efficient implementations.

• Low-rank decomposition can have satisfactory results both in the compression of 
model size and acceleration of inference speed

• Several previous works attempted to directly approximate a pre-trained model by low-rank decomposition; 
however, small approximation errors in parameters can ripple a large prediction loss. As a result, performance 
usually drops significantly and a sophisticated fine-tuning is required to recover accuracy. 

Retrain low-rank decomposed model

• Low capacity: compared with an original full rank network, the capacity of a low-rank network is small, which 
induces difficulties on performance optimization.

• Deep structure: low-rank decomposition typically doubles the number of layers in a network. The added layers 
make numerical optimization much more challenging because of exploding/vanishing gradients.

• Rank selection: the rank of decomposed network is often heuristically chosen based on pre-trained networks. 
This may not the optimized rank for network trained from scratch.
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Methods Experiments

All comparison decomposition and pruning results here are finetuned to 

improve accuracy, while our methods results are from direct decomposition after 

training.

• TRP_spatial: our trained rank pruning method with spatial-wise decomposition;  

• TRP_channel: our trained rank pruning method with channel-wise decomposition;

• Nu: nuclear norm regularization in training; 

• Speedup: the reduction ratio of model FLOPs

On both CIFAR-10 and ImageNet datasets, it shows that our TRP methods can 

outperform other existing methods both in channel-wise decomposition and 

spatial-wise decomposition formats. It achieves better balance of accuracy and 

complexity. 
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