Trained Rank Pruning for Efficient Deep Neural Networks

Yuhui Xu¹, Yuxi Li¹, Shuai Zhang², Wei Wen³, Botao Wang², Wenrui Dai¹, Yingyong Qi², Yiran Chen³, Weiyao Lin¹, Hongkai Xiong¹

> ¹Shanghai Jiao Tong University, China ²Qualcomm AI Research, USA ³Duke University, USA

Motivation

Why Low-rank Decomposition?

- Among the factorization-based approaches, low-rank approximation has been widely adopted because of its solid theoretical rationale and efficient implementations.
- Low-rank decomposition can have satisfactory results both in the compression of model size and acceleration of inference speed

Decompose a pre-trained model

• Several previous works attempted to directly approximate a pre-trained model by low-rank decomposition; however, small approximation errors in parameters can ripple a large prediction loss. As a result, performance usually drops significantly and a sophisticated fine-tuning is required to recover accuracy.

Retrain low-rank decomposed model

- Low capacity: compared with an original full rank network, the capacity of a low-rank network is small, which induces difficulties on performance optimization.
- Deep structure: low-rank decomposition typically doubles the number of layers in a network. The added layers make numerical optimization much more challenging because of exploding/vanishing gradients.
- Rank selection: the rank of decomposed network is often heuristically chosen based on pre-trained networks. This may not the optimized rank for network trained from scratch.

Trained Rank Pruning

Our trained rank pruning method has 2 interleaved steps: (A) Conventional SGD training with nuclear norm regularization and sub-gradient, conditioning the network to be LR compatible

Methods

Nuclear norm constraint

$$\min\left\{f(x;w) + \lambda \sum_{l=1}^{L} ||W||_{*}\right\}$$

Experiments

All comparison decomposition and pruning results here are finetuned to improve accuracy, while our methods results are from direct decomposition after training.

- **TRP_spatial**: our trained rank pruning method with spatial-wise decomposition;
- **TRP_channel**: our trained rank pruning method with channel-wise decomposition;
- Nu: nuclear norm regularization in training;
- **Speedup**: the reduction ratio of model FLOPs

Sub-gradient descent [1]

ICML, 2012.

 $g_{sub} = \Delta f + \lambda U_{tru} V_{tru}^T$ where $W = U \sum V^T$ is the SVD decomposition and U_{tru} , V_{tru} are truncated U, V with rank(W).

(B) Training with LR decomposition, obtaining the LR network with rank pruning

-- forward: decompose original filters T into LR filters T low;

-- backward: update decomposed LR filters T low with SGD and then substitute original filters.

Step B is inserted into training process after every *m* SGD iterations of step A.

Capable of generating LR model parameters with diverse optimal ranks. Applicable to most existing decompositions, i.e. channel-wise and spatial-wise decompositions.

Model	Top 1 (%)	Speed up	
ResNet-20 (baseline)	91.74	$1.00 \times$	
ResNet-20 (TRP_spatial)	90.12	$1.97 \times$	
ResNet-20 (TRP_spatial + Nu)	90.50	2.17 imes	
ResNet-20 (Spatial-decomp)	88.13	$1.41 \times$	
ResNet-20 (TRP_channel)	90.13	$2.66 \times$	
ResNet-20 (TRP_channel + Nu)	90.62	2.84 imes	
ResNet-20 (Channel-decomp)	89.49	$1.66 \times$	
Table 1: Experiment results on CIFAR-10.			

Method	Top1(%)	Speed up		
Baseline	69.10	$1.00 \times$		
TRP_spatial	65.46	1.81×		
TRP_spatial + Nu	65.39	2.23 imes		
Spatial-decomp	63.1	1.41×		
TRP_channel	65.51	$2.60 \times$		
TRP_channel + Nu	65.34	3.18 ×		
Channel-decomp	62.80	$2.00 \times$		
Table 2: Results of ResNet-18 on ImageNet.				

Method	Top1(%)	Speed up	
Baseline	75.90	1.00×	
TRP_spatial + Nu	72.69	2.30×	
TRP_spatial + Nu (diff hyper-param)	74.06	1.80×	
Spatial-decomp	71.80	$1.50 \times$	
Filter pruning-ICCV2017	72.04	1.58	
Thinet-TPAMI2018	72.03	2.26	
Table 3: Results of ResNet-50 on ImageNet.			

On both CIFAR-10 and ImageNet datasets, it shows that our TRP methods can outperform other existing methods both in channel-wise decomposition and spatial-wise decomposition formats. It achieves better balance of accuracy and

The 5th Workshop on Energy Efficient Machine Learning and Cognitive Computing @ NeurIPS 2019