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What are the objects in the pictures below?
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Our architecture contribution is therefore required to overcome this
limitation
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Fig. 1: Proposed architecture for fast anytime prediction with separable convolutions: Each row corresponds to a
different scale at which the feature maps are computed (in this case 32x32, 16x16, 8x8, and 4x4 from bottom to top). Each
edge represents a convolution operation or an identity mapping. Each node represents a summation or a concatenation of all
inputs along the channel axis. Connections across scales are aggregated using summation while connections within the same
scale are concatenated. The input image in this figure is taken from the cat class of the CIFAR10 dataset [7].

RESULTS

» Construct a classifier that is both accurate and cheap to evaluate CIFAR10, anytime prediction

* but being capable of using extra resources during prediction time,
when available, to improve the performance
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* Observation: Some instances can be accurately classified by :

computing a single cheap feature. Other instances require many / 88 1

more expensives one. '
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Problems: N
* The lack of coarse-level features of early-exit classifiers g 801
* Early classifiers interfere with later classifier o
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CONCLUSIONS

* New neural network architecture for fast anytime prediction

 Dense connectivity and simultaneous representations across multiple

scales could be adapted to allow using depthwise and spatially
separable convolutions
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* Our CNN architecture is useful for low budget settings where first
predictions have to be available as soon as possible.
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