
Energy-Aware Neural Architecture Optimization
With Splitting Steepest Descent

Dilin Wang*1, Lemeng Wu*1, Meng Li2, Vikas Chandra2, Qiang Liu 1

{dilin, lmwu, lqiang}@cs.utexas.edu, {meng.li, vchandra}@fb.com
1 UT Austin

2 Facebook Inc.

Abstract

Designing energy-efficient networks is of critical importance for improving the
applicability of deep learning to mobile and edge settings. In this work, we intro-
duce a splitting steepest descent algorithm for fast energy-aware neural architec-
ture optimization. Our main idea is to frame the architecture optimization into a
continuous splitting process, which gradually grows the network by splitting exist-
ing neurons into multiple off-springs. Empirical results show that our method can
train highly accurate and energy-efficient networks on challenging benchmarks
such as ImageNet.

1 Introduction

Deep neural networks (DNNs) has demonstrated remarkable performance in solving various chal-
lenge problems such as image classification, object detection and language understanding. Although
large deep networks have good empirical and theoretical properties, they yield large and redundant
networks that are slow and costly in the inference phase. This imposes a great challenge for the
broader applicability of deep networks due to inference inefficiency, especially for mobile and edge
settings where the computation and energy budgets are highly limited.

Neural architecture search (NAS) has been found a powerful tool for automating energy-efficient
architecture design. Most existing NAS methods are based on black-box optimization techniques,
including reinforcement learning, evolutionary algorithms. However, these methods are often ex-
tremely time consuming due to the enormous search space of possible architectures and the high
cost for evaluating the performance of each candidate network. More recent approaches have made
the search more efficient by using weight-sharing (e.g. Pham et al., 2018), which, however, suffers
from the so-called multi-model forgetting problem (Benyahia et al., 2019) that causes training in-
stability and performance degradation during search. Overall, designing the best architectures using
NAS still requires a lot of expert knowledge and trial-and-errors.

In contrast, pruning-based methods construct smaller networks from a pretrained over-parameterized
neural network by gradually removing the least important neurons. Various pruning strategies have
been developed based on different heuristics (e.g., Li et al., 2016; Liu et al., 2017), including energy-
aware pruning methods that use energy consumption related metrics to guide the pruning process
(e.g., Gordon et al., 2018; He et al., 2018). However, a common issue of these methods is to alter the
standard training objective with sparsity-induced regularization which necessities sensitive hyper-
parameters tuning. Furthermore, the final performance is largely limited by the initial hand-crafted
network, which may not be optimal in the first place.

In this work, we introduce a novel splitting steepest descent algorithm for neural architecture opti-
mization. Instead of treating architecture search as a discrete optimization problem, our approach is
to frame the architecture search problem into a novel continuous splitting process, which alternates

EMC2: 5th Edition Co-located with NeurIPS’19

(a) (b) (c)

Figure 1: (a) Splitting one neuron into two off-springs. (b) Steepest descent on the overall ar-
chitecture space consists of both standard gradient descent on the parameters (with fixed network
structures), and updates of the network structures (via splitting). (c) The local optima in the low
dimensional space is turned into a saddle point in a higher dimensional of the augmented networks,
and hence can be escaped by our splitting strategy, yielding monotonic decrease of the loss.

between a standard parametric gradient descent phase to reach a parametric local minima, and a
splitting phase that grows the network structure by splitting a subset of existing neurons into several
off-springs in an optimal way. Our preliminary results show encouraging results on various image
classification benchmarks. We refer the reader to Liu et al. (2019) for more mathematical treatments.

2 Splitting Steepest Descent

Our key idea is to view neural architecture search as a continuous optimization in the configuration
space of the neuron parameters, on which steepest descent can be introduced for efficient optimiza-
tion. To fix the idea, assume the neural network structure is specified by a set of size parameters
m = {m1, . . . ,mK}, where each mk could denote the number of neurons of in the k-th layer, or of
the kth type. Denote by Θm the parameter space of networks of size m, then Θ∞ = ∪m∈NK Θm,
called the configuration space, is the space of all possible neural architectures and parameters.

In this view, learning parameters for a fixed network is minimizing the loss inside an individual
sub-region Θm, while optimizing in the overall configuration space Θ∞ admits the co-optimization
of both the architecture and parameters. The key observation is that by considering optimization on
Θ∞ (instead, e.g., on the discrete size parameters m), we obtain an (infinite dimensional) continuous
optimization on Θ∞. With a proper definition of distance on Θ∞, we can then derive generalized
steepest descent on Θ∞ that leverages valuable gradient information to optimize the architectures
more efficiently.

Intuitively, the steepest descent on Θ∞ should consist of two phases: 1) the steepest descent inside
each Θm with a fixed m, which reduces to the standard gradient descent on parameters, and 2) the
descent across the boundary of different sub-regions Θm, which corresponds to optimal updates on
the network structures. The structural descent across boundaries of Θm can be viewed as escaping
saddle points in the configuration space. As shown in Figure 1(b), when the parametric training
inside a fixed Θm gets saturated, structural descent allows us to escape local optima by jumping
into a higher dimensional sub-region. The idea is that the local optima inside Θm can be turned
into a saddle point in the higher dimensional configuration space Θm (Figure 1(c)), which can be
escaped easily using stochastic gradient descent on the higher dimensional space.

Escaping local minima via splitting Our view motivates us to derive a steepest descent algorithm
on Θ∞, with a proper notion of distances. In Liu et al. (2019), steepest descent with∞-Wasserstein
distance was considered, which is shown to naturally correspond to practical procedures of split-
ting neurons into multiple off-springs (Figure 1(a)) to enlarge the capacity of the neural network.
This yields a new style of highly efficient ”growing-based” approaches with superb performance on
challenging tasks in energy efficient NAS.

Specifically, consider a network with one neuron θ, assume the loss has a form,

L(θ) := Ex∼D[Φ(σ(θ, x))],

where D is a collection of training data, σ(θ, x) represents the activation function and Φ defines the
training loss given input x. We split θ into m off-springs {θi}mi=1, and replace the neuron σ(θ, x)

2

Algorithm 1 Splitting Steepest Descent for Neural Architecture Optimization
Starting from a small base network (viewed as the “seed” or template), we gradually grow the
neural network by alternating between the following two phases until convergence:
1. Parametric Updates: Optimize neuron weights using standard methods (e.g., SGD) until no
further improvement can be made by only updating parameters.
2. Splitting Neurons: Sort the neurons by their splitting indexes (see Equation equation 1),
and split the top ranked neurons with negative splitting indexes into two off-springs along their
splitting gradients.

with a weighted sum of the off-spring neurons
∑m
i=1 wiσ(θi, x), where {wi}mi=1 is a set of positive

weights assigned on the off-springs, and satisfies
∑m
i=1 wi = 1, wi > 0. See Figure 1 (a) for an

illustration. This yields an augmented loss function

L({θi, wi}) = Ex∼D
[
Φ

(m∑
i=1

wiσ(θi, x)

)]
.

It is easy to see that if we set θi = θ for all the off-springs, the network remains unchanged.
Therefore, as we change θi in a small neighborhood of θ, it introduces a smooth change on the loss
function without changing the functionality of the network significantly. This allows us to achieve
monotone improvements of the loss through architecture updates as shown in Figure 1(c).

Deriving optimal splitting solutions It remains to derive the optimal splitting strategy, including
deciding the number of off-springs m, the values of the weights {wi} and the parameters for the
off-springs {θi}. This is formulated into the following optimization problem:

min
m,{θi,wi}mi=1

{
L({θi, wi})− L(θ) s.t. ||θi − θ|| ≤ ε,

m∑
i=1

wi = 1, wi > 0, ∀ i
}
.

where we restrict the change of parameters within an infinitesimal ε-ball of the parameter of the
original neuron, that is, ||θi−θ|| ≤ ε, with ε a step size parameter. When ε is very small, the optimum
of this problem is determined (asymptotically) by a splitting matrix S(θ) defined as follows,

min

{
L({θi, wi})− L(θ)

}
≈ ε2

2
λmin(S(θ)), with S(θ) = Ex∼D[Φ′(σ(θ, x))∇2

θθσ(θ, x)],

where the splitting matrix S(θ) is a d×dmatrix (d is the dimension of θ); its eigenvalue λmin(S(θ))
(denoted as splitting index) determines the optimal gain that can be achieved by splitting. In addition,
this optimum can be achieved by a simple strategy of splitting the neuron into two copies with equal
weights, whose parameters are updated along the minimum eigen-vectors vmin(S(θ)) of S(θ), that
is,

m = 2, θ1 = θ + εvmin(S(θ)), θ2 = θ − εvmin(S(θ)), w1 = w2 = 1/2.

Since the decrease of the loss is proportional to λmin(S(θ)), the splitting can achieve improvement
only when λmin(S(θ)) < 0, in which case the neuron is called “splittable”. This suggests that we
should apply the splitting strategy above only on splittable neurons.

Splitting deep neural networks The result above can be naturally extended to more general cases
when we need to split multiple neurons in deep neural networks. Consider a neural network with n
neurons θ[1:n] = {θ1, · · · , θn}. Assume we split a subset A of neurons with the optimal strategies
above following their own splitting matrices, the improvement of the overall loss equals the sum of
individual gains:

G(A) =
∑
`∈A

λmin(`),

where λmin(`) denotes the minimum eigenvalue of the splitting matrix S`(θ`) associated with neu-
ron `. Therefore, given a budget of splitting at most a given number of neurons, the optimal subset
of neurons to split are the top ranked neurons with the most negative eigenvalues.

3

3 Neural architecture optimization via splitting

The method above allows us to select the best subset of neurons to split to yield the steepest descent
on the loss function. In practice, however, splitting different neurons incurs a different amount of
increase on the model size, computational cost, and physical energy consumption. For example,
splitting a neuron connecting to a large number of inputs and outputs increases the size and compu-
tational cost of the network much more significantly than splitting the neurons with less inputs and
outputs. Intuitively, one may want to split fewer neurons in layers close to inputs, which typically
have larger input resolutions and a high energy cost, while split more neurons in deep layers which
are responsible for the final classification and have lower computational cost. A better splitting
strategy should consider taking the different cost of splitting different neurons into account.

To address this problem, we propose to explicitly incorporate the splitting cost different neurons
to better guide the splitting process. Specifically, we propose to decide the optimal splitting set by
solving the following constrained optimization:

min
β

n∑
`=1

β`λmin(`),

n∑
`=1

e`β` ≤ ebudget, β` ∈ {0, 1}, ∀`, (1)

where β` denotes if enuron i should be split, and e` represents the cost of splitting neuron i at the
current iteration of splitting steepest descent. In this work, we take e` to be energy cost, measured by
flops. Note that the cost of splitting the same neuron changes across iterations as the network model
size changes. Therefore, we re-evaluate the cost of every neuron at each network growing stage,
based on the topology of the current network. See Algorithm 1 for an overview of our method.

4 Experiments

Results on CIFAR100 We first test on the CIFAR100 dataset using MobileNetV1 as backbone.
We keep the network topology of our architectures as the same as the original MobileNetV1 while
searching the best number of channels for each layer via splitting.

We compare with the popular width multiplier baseline (Howard et al., 2017) and several strong
pruning methods: Pruning (Bn) (Liu et al., 2017), Pruning (L1) (Li et al., 2016) and Morphnet
(Gordon et al., 2018). Figure 2 (a) shows the results on the CIFAR100 dataset, in which our method
performs the best when targeting similar flops.

To further demonstrate the efficacy of our method in discovering better energy-efficient neural net-
works, we prune the final network learned by our splitting algorithm to attain a sequence of smaller
models while maintaining similar flops as our splitting checkpoints using Pruning (Bn) (Liu et al.,
2017). As we can see from Figure 2 (b), it is clear that our splitting checkpoints form a better
flops-accuracy trade-off curve than pruned models.

Te
st

A
cc

ur
ac

y

6.5 7.0 7.5 8.0

0.55

0.60

0.65

0.70

Baseline (full size)
Width multiplier
Pruning (L1)
Pruning (Bn)
MorphNet
Splitting (ours)

Te
st

A
cc

ur
ac

y

6.0 6.5 7.0 7.5 8.0

0.5

0.6

0.7

Pruning (Bn)
Splitting (ours)

(a) Log10(flops) (b) Log10(flops)

Figure 2: (a) Results on CIFAR100 using MobileNet(Howard et al., 2017) as backbone; (b) our
preliminary results show that growing networks using our splitting steepest descent can learn more
accurate and energy-efficient (with small flops) than pruning methods.

Results on ImageNet We also conduct experiments on large-scale ImageNet dataset. We choose
both MobilenetV1 (Howard et al., 2017) and MobileNetV2 (Sandler et al., 2018) as our backbone

4

architectures, which were strong baselines and specifically hand-designed and heavily tuned to op-
timize accuracy under a flops-constrain on the ImageNet dataset. For our method, we start with rel-
ative small models (denoted by Splitting-0 (seed)) by shrinking the network uniformly with width-
multiplier 0.3, and gradually grow the network via splitting. As we see from table 1 and 2, our
splitting models yield better performance compared with prior art expert-designed architectures and
AMC (He et al., 2018) on all flops-regimes.

Model MACs (G) Top-1 Accuracy Top-5 Accuracy
MobileNet (1.0x) (He et al., 2019) 0.569 72.93 91.14
Splitting-4 0.561 73.98 91.51
MobileNet (0.75x) 0.325 70.25 89.49
AMC (He et al., 2018) 0.301 70.50 89.30
Splitting-3 0.292 71.46 89.68
MobileNet (0.5x) 0.150 65.20 86.34
Splitting-2 0.140 68.25 87.94
Splitting-1 0.082 64.07 85.30
Splitting-0 (seed) 0.059 59.20 81.82

Table 1: Results on ImageNet using MobileNetV1.

Model MACs (G) Top-1 Accuracy Top-5 Accuracy
MobileNetV2 (1.0x) (He et al., 2019) 0.300 72.04 90.57
Splitting-3 0.298 72.84 90.83
MobileNetV2 (0.75x) 0.209 69.80 89.60
AMC (He et al., 2018) 0.210 70.85 89.91
Splitting-2 0.208 71.76 90.07
MobileNetV2 (0.5x) 0.097 65.40 86.40
Splitting-1 0.095 66.60 87.06
Splitting-0 (seed) 0.039 55.61 79.55

Table 2: Results on ImageNet using MobileNetV2.

5 Conclusions

In this paper, we introduce a splitting stepest descent idea for neural architecture optimization. Re-
sults on large-scale ImageNet benchmark using MobileNetV1 and MoibileNetV2 demonstrate the
effectiveness of our method.

References
Yassine Benyahia, Kaicheng Yu, Kamil Bennani-Smires, Martin Jaggi, Anthony Davison, Mathieu

Salzmann, and Claudiu Musat. Overcoming multi-model forgetting. ICML, 2019.
Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju Yang, and Edward Choi. Mor-

phnet: Fast & simple resource-constrained structure learning of deep networks. In CVPR, 2018.
Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and Mu Li. Bag of tricks for

image classification with convolutional neural networks. In CVPR, 2019.
Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model

compression and acceleration on mobile devices. In ECCV, 2018.
Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,

Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Qiang Liu, Lemeng Wu, and Dilin Wang. Splitting steepest descent for growing neural architectures.
NeurIPS, 2019.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. In Proceedings of the IEEE
International Conference on Computer Vision, pp. 2736–2744, 2017.

Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Efficient neural architecture
search via parameter sharing. arXiv preprint arXiv:1802.03268, 2018.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In CVPR, 2018.

5

	Introduction
	Splitting Steepest Descent
	Neural architecture optimization via splitting
	Experiments
	Conclusions

