
Q8BERT: Quantized 8Bit BERT

Ofir Zafrir Guy Boudoukh Peter Izsak Moshe Wasserblat
Intel AI Lab

{ofir.zafrir, guy.boudoukh, peter.izsak, moshe.wasserblat}@intel.com

Abstract

Recently, pre-trained Transformer [14] based language models such as BERT [3]
and GPT [9], have shown great improvement in many Natural Language Process-
ing (NLP) tasks. However, these models contain a large amount of parameters.
The emergence of even larger and more accurate models such as GPT2 [8] and
Megatron1, suggest a trend of large pre-trained Transformer models. However,
using these large models in production environments is a complex task requiring
a large amount of compute, memory and power resources. In this work we show
how to perform quantization-aware training during the fine-tuning phase of BERT
in order to compress BERT by 4× with minimal accuracy loss. Furthermore, the
produced quantized model can accelerate inference speed if it is optimized for 8bit
Integer supporting hardware.

1 Introduction

Pre-trained transformer language models (GPT [9], XLNet [17], XLM [7], BERT [3]) have demon-
strated State-of-the-Art (SOTA) results for a variety of NLP tasks such as sentence classification,
sequence tagging and question answering, by extracting contextual word representations or by fine-
tuning the whole model on a target task. The models are pre-trained on extremely large corpora and
result in a large number of parameters. For example, Devlin et al. [3] introduced two pre-trained
models: BERT-Base, which has 110M parameters in 32bit Floating Point (FP32) representation, and
BERT-Large, which has 334M parameters in FP32 representation. Both BERT models have a high
memory footprint and require heavy compute and wide bandwidth during inference. In addition,
real time NLP applications that integrate BERT have to meet low latency requirements to achieve
a high quality customer experience, therefore, the computational characteristics of BERT pose a
challenge to deployment in production environments. These models will have a major impact on the
way business organizations consume computing resources, since computing resources will have to
handle loading of large models and heavy feed-forward calculations, shifting workload focus from
lower level training to more application-specific fine-tuning and inference. Therefore, it is crucial to
develop energy-efficient and minimum-cost methods to run these models in production [16].

Model compression algorithms are used to reduce compute and memory resources required for
running inference. For example, Han et al. [4] used a pipeline of pruning, quantization and Huffman
encoding in order to achieve a compression ratio of 49× of VGG-16 [11]. As a result, the compressed
VGG-16 can be fitted into an on-chip SRAM cache which allows faster access times with less power
in comparison to off-chip DRAM memory. In another example, Jacob et al. [5] introduced a method
of training linear quantized Convolutional Neural Networks (CNN) that uses Integer Arithmetic
instead of Floating Point Arithmetic which can be up to 4× faster using only 25% of the memory
footprint [13].

In this work, we present a method for achieving best-in-class compression-accuracy ratio for BERT.
To do this, we apply quantization-aware training during the fine-tuning process of BERT. We quantize

1https://github.com/NVIDIA/Megatron-LM

EMC2: 5th Edition Co-located with NeurIPS 2019, Vancouver, Canada

https://github.com/NVIDIA/Megatron-LM

all GEMM (General Matrix Multiply) operations in BERT Fully Connected (FC) and Embedding
layers. We simulate 8bit quantized inference while maintaining 99% accuracy in comparison to the
FP32 version of BERT for eight different NLP tasks. Moreover, since we quantize all the FC and
Embedding layers’ weights - which comprise over 99% of the model’s weights - to 8bit, we achieve a
memory footprint 4× smaller than the original BERT. In addition, it is possible to use our method to
implement efficient inference with hardware that supports 8bit arithmetic and an optimized library for
8bit GEMM. We have released our work as part of our open source model library NLP Architect2.

The method presented in this paper is not exclusive to BERT model and can be integrated into other
large pre-trained Transformer based models.

2 Method

In this section, we describe the quantization scheme, linear quantization, and quantization-aware
training method we used. We chose to use this quantization scheme because, in addition to reducing
the model size by approximately 4×, it is also possible to accelerate inference time by using Integer
arithmetic to calculate GEMM using specialized hardware for Integer and Fixed Point calculations.
For example, Bhandare et al. [2] stated that using Intel R© Xeon R© Cascade Lake’s Vectorized Neural
Network Instructions (VNNI) to perform Int8 matrix multiplication provides a speed-up of 3.7×
over FP32 matrix multiplication. Moreover, by using symmetric linear quantization we simplify the
quantization process and zero out terms related to the offset part of the quantized values. Our method
is based on the method proposed by Jacob et al. [5].

2.1 Quantization Scheme

We use symmetric linear quantization as our quantization scheme for quantizing both weights and
activations to 8bit Integers (Int8):

Quantize(x|Sx,M) := Clamp (bx× Sxe,−M,M) ,

Clamp (x, a, b) = min (max (x, a), b)
(1)

where Sx is the quantization scaling-factor for input x and M is the highest quantized value when
quantizing to b number of bits:

M = 2b−1 − 1 (2)
E.g. when quantizing to 8 bits, M = 127. The scaling-factor can be determined either dynamically
during inference, or calculated using statistics collected during training, or calculated using statistics
collected, post-training, during inference on a calibration set. In our work the weights’ scaling-factor
is calculated according to:

SW =
M

max (|W |)
(3)

and the activations’ scaling-factor is calculated based on values seen during training using an
Exponential Moving Average (EMA):

Sx =
M

EMA (max (|x|))
(4)

2.2 Quantized-Aware Training

Quantization-aware training is a method of training Neural Networks (NN) to be quantized at the
inference stage, as opposed to post-training quantization where the training is executed without
any adaptation to the quantization process. In our work, we use fake quantization to introduce the
quantization error to the model during the training phase in order for the model to learn to bridge
the quantization error gap. Fake quantization is an operation that simulates the rounding effect in
Floating Point values as presented by Jacob et al. [5]. Since the rounding operation is not derivable,
we use the Straight-Through Estimator (STE) [1] to estimate the gradient of fake quantization:

∂xq

∂x
=
−→
1 (5)

2https://github.com/NervanaSystems/nlp-architect

2

https://github.com/NervanaSystems/nlp-architect

Table 1: GLUE tasks and SQuAD results. Each score is evaluated on the publicly available develop-
ment set for the task using the metric specified for each task. For each task we present the score of a
baseline (FP32) model, of a Quantization-Aware Training (QAT) model quantized to 8bit, and of a
Dynamically Quantized (DQ) to 8bit model. Large means those tasks were trained with BERT-Large
architecture.

Dataset Metric BERT baseline
accuracy (STD)

QAT BERT
8bit (STD)

DQ BERT
8bit (STD)

CoLA Matthew’s corr. 58.48 (1.54) 58.48 (1.32) 56.74 (0.61)
MRPC F1 90 (0.23) 89.56 (0.18) 87.88 (2.03)
MRPC-Large F1 90.86 (0.55) 90.9 (0.29) 88.18 (2.19)
QNLI Accuracy 90.3 (0.44) 90.62 (0.29) 89.34 (0.61)
QNLI-Large Accuracy 91.66 (0.15) 91.74 (0.36) 88.38 (2.22)
QQP F1 87.84 (0.19) 87.96 (0.35) 84.98 (0.97)
RTE Accuracy 69.7 (1.5) 68.78 (3.52) 63.32 (4.58)
SST-2 Accuracy 92.36 (0.59) 92.24 (0.27) 91.04 (0.43)
STS-B Pearson corr. 89.62 (0.31) 89.04 (0.17) 87.66 (0.41)
STS-B-Large Pearson corr. 90.34 (0.21) 90.12 (0.13) 83.04 (5.71)
SQuADv1.1 F1 88.46 (0.15) 87.74 (0.15) 80.02 (2.38)

where xq denotes the result of fake quantizing x. Using the combination of fake quantization and STE
we are able to perform quantized inference during training while back-propagating at full precision
which allows the FP32 weights to overcome the quantization error.

3 Implementation

Our goal is to quantize all the Embedding and FC layers in BERT to Int8 using the method described
in Section 2. For this purpose we implemented quantized versions of Embedding and FC layers.
During training, the Embedding layer returns fake quantized embedding vectors, and the quantized
FC performs GEMM between the fake quantized input and the fake quantized weight, and then
accumulates the products to the bias which is untouched since the bias will be later quantized to Int32.
During inference, the quantized Embedding layer returns Int8 embedding vectors, and the quantized
FC performs GEMM between Int8 inputs accumulated to the Int32 bias which is quantized using the
weights’ and activations’ scaling-factors as described in [5]. Although the bias vectors are quantized
to Int32 values, they only make up for a fraction of the amount of parameters in the model.

Our implementation of Quantized BERT is based on the BERT implementation provided by the
PyTorch-Transformers3 library. To implement quantized BERT we replaced all the Embedding
and FC layers in BERT to the quantized Embedding and FC layers we had implemented. Operations
that require higher precision, such as Softmax, Layer Normalization and GELU, are kept in FP32.

4 Evaluation

To test our approach we evaluated our model on the GLUE (General Language Understanding
Evaluation) benchmark [15], which is a collection of resources for training, evaluating, and analyzing
natural language understanding systems in a wide array of NLP tasks. The ultimate goal of GLUE is
to drive research in the development of general and robust natural language understanding systems.
In addition, we evaluated our model on the question and answering task SQuADv1.1 [10]. The
Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of
questions posed by crowd workers on a set of Wikipedia articles, where the answer to every question
is a segment of text, or span, from the corresponding reading passage.

We summarized our results for quantized BERT in the QAT column in Table 1. We ran each
experiment five times and reported the average result and standard deviation. In addition, we
calculated the relative error induced by the quantization process and summarized the results in
Table 2. In all experiments we used BERT-Base as the base model unless indicated otherwise. In

3https://github.com/huggingface/pytorch-transformers

3

https://github.com/huggingface/pytorch-transformers

Table 2: Reduction in accuracy induced by quantization relative to baseline model. DQ is the
Dynamically Quantized model and QAT is the Quantization-aware Trained quantized model. Large
means those tasks were trained with BERT-Large architecture.

Method CoLA MRPC MRPC-Large QNLI QNLI-Large QQP RTE SST-2 STS-B STS-B-Large SQuADv1.1
DQ 2.98% 2.36% 2.95% 1.69% 3.58% 1.85% 9.13% 1.43% 2.19% 8.08% 9.54%
QAT 0.00% 0.49% -0.04% -0.35% -0.09% -0.14% 1.32% 0.13% 0.65% 0.24% 0.81%

all experiments we fine-tuned the pre-trained models offered by Tensorflow-Hub4. In our internal
testing, we found that the relative error induced by quantization is less than 1% (excluding RTE task)
while the space capacity of the model is reduced by 4x.

4.1 Effect of Quantization-Aware Training

In order to measure the necessity of quantization-aware training we compared our results to post-
training quantized models. We quantized our baseline models using Dynamic Quantization (DQ). The
weights and activations are quantized as described in Section 2.1 with a small difference in the way we
calculate the quantization scaling-factor of the activations. Instead of using Equation 4 we compute
the scale the same way we compute the weights’ scaling-factor using Equation 3. This calculation is
done during inference for each incoming activation tensor. The results for this quantization method
are summarized in the DQ column in Table 1 and the relative error induced by quantization is also
summarized in Table 2. We observe that the DQ method produces significantly worse results over all
tasks.

5 Related Work

Compressing Transformer-based models for efficient inference is an active field of research. Junczys-
Dowmunt et al. [6] applied knowledge distillation and 8bit post-training quantization to speed up
Transformer models for neural machine translation (Transformer-LT) [14], however, the quantized
model suffered a loss of 1 BLEU score in comparison to the baseline model. Bhandare et al. [2]
also applied 8bit post-training quantization to Transformer-LT models and demonstrated how to
utilize Intel R© specialized 8bit hardware to accelerate the inference process. Habana Labs5 published
Quantized BERT performance measurements on its in-house accelerator for NN inference, however,
Habana quantized BERT to 16bit Integer which offers a much wider quantization range and only 2×
compression. NVIDIA6 also measured BERT performance on its in-house accelerator using 16bit
Floating Point arithmetic. Furthermore, NVIDIA implemented a number of optimized kernels for
BERT’s operations in order to save memory bandwidth during inference. Sucik [12] fine-tuned BERT
on a custom dataset and performed 8bit Integer post-training quantization.

6 Conclusions and Future Work

We have shown a method for quantizing BERT GEMM operations to 8bit for a variety of NLP
tasks with minimum loss in accuracy, and hope that the software developers community can use our
quantization method to compress BERT and implement efficient BERT inference with 8bit GEMM
operations. Efficient inference will enable low-latency NLP applications on a variety of hardware
platforms from edge devices to data centers. In the future we intend to apply other model compression
methods in order to compress BERT. Decreasing BERT’s memory footprint will accelerate BERT
inference time and reduce power consumption, both of which are critical for deploying BERT in
production environments having low memory and power resources. Furthermore, we intend to
integrate other compression methods with our quantized BERT model.

References
[1] Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradients through stochastic

neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.
4https://www.tensorflow.org/hub
5https://habana.ai/habana-labs-goya-delivers-inferencing-on-bert/
6https://devblogs.nvidia.com/nlu-with-tensorrt-bert/

4

https://www.tensorflow.org/hub
https://habana.ai/habana-labs-goya-delivers-inferencing-on-bert/
https://devblogs.nvidia.com/nlu-with-tensorrt-bert/

[2] A. Bhandare, V. Sripathi, D. Karkada, V. Menon, S. Choi, K. Datta, and V. Saletore. Efficient
8-bit quantization of transformer neural machine language translation model. arXiv preprint
arXiv:1906.00532, 2019.

[3] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. ArXiv, abs/1810.04805, 2018.

[4] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

[5] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and D. Kalenichenko.
Quantization and training of neural networks for efficient integer-arithmetic-only inference.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
2704–2713, 2018.

[6] M. Junczys-Dowmunt, K. Heafield, H. Hoang, R. Grundkiewicz, and A. Aue. Marian: Cost-
effective high-quality neural machine translation in c+. ACL 2018, page 129, 2018.

[7] G. Lample and A. Conneau. Cross-lingual language model pretraining. arXiv preprint
arXiv:1901.07291, 2019.

[8] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language models are
unsupervised multitask learners.

[9] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving language under-
standing by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-
assets/researchcovers/languageunsupervised/language understanding paper. pdf, 2018.

[10] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. Squad: 100,000+ questions for machine
comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, pages 2383–2392, 2016.

[11] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

[12] S. Sucik. Compressing bert for faster prediction. URL https://blog.rasa.com/compressing-bert-
for-faster-prediction-2/, 2019.

[13] V. Vanhoucke, A. Senior, and M. Z. Mao. Improving the speed of neural networks on cpus. In
Deep Learning and Unsupervised Feature Learning Workshop, NIPS 2011, 2011.

[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. In Advances in neural information processing systems,
pages 5998–6008, 2017.

[15] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. Bowman. Glue: A multi-task benchmark
and analysis platform for natural language understanding. In Proceedings of the 2018 EMNLP
Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 353–355,
2018.

[16] M. Wasserblat, O. Pereg, and G. Singer. Future directions for nlp in commercial environments.
URL https://www.intel.ai/future-directions-nlp, 2019.

[17] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le. Xlnet: Generalized
autoregressive pretraining for language understanding. arXiv preprint arXiv:1906.08237, 2019.

5

	Introduction
	Method
	Quantization Scheme
	Quantized-Aware Training

	Implementation
	Evaluation
	Effect of Quantization-Aware Training

	Related Work
	Conclusions and Future Work

