
Improving Efficiency in Neural Network Accelerator
using Operands Hamming Distance Optimization

Meng Li∗, Yilei Li*, Pierce Chuang, Liangzhen Lai, Vikas Chandra
{meng.li, yileil, pichuang, liangzhen, vchandra}@fb.com

Facebook Inc.

Abstract

Neural network accelerator is a key enabler for the on-device AI inference, for
which energy efficiency is an important metric. The datapath energy, including
the computation energy and the data movement energy among the arithmetic units,
claims a significant part of the total accelerator energy. We find that the datapath
energy is highly correlated with the bit flips when streaming the input operands
into the arithmetic units, defined as the hamming distance of the input operand
matrices. Based on the insight, we propose a post-training optimization algorithm
and a hamming-distance-aware training algorithm to co-design and co-optimize
the accelerator and the network synergistically. The experimental results based on
post-layout simulation with MobileNetV2 demonstrate on average 2.85× datapath
energy reduction and up to 8.51× datapath energy reduction for certain layers on
an input stationary compute array.

1 Introduction

Deep neural networks (DNNs) have revolutionized different applications ranging from computer
vision to speech and natural language processing (LeCun et al., 2015), and are now widely deployed
in data centers (Jouppi et al., 2017) and on edge devices (Wu et al., 2019). As modern DNNs usually
require significant computation, neural network accelerators are extensively studied in recent years to
enable energy-efficient processing (Sze et al., 2017).

Datapath of the neural network accelerator, including the arithmetic compute units and the data bus
among the units, lies at the heart of neural network accelerators. The datapath energy consumption of
a neural network accelerator can be estimated as Edatapath = λ ·OPs · Energy/OP , where OPs
denotes the total number of operations of the neural network, Energy/OP is the datapath energy
consumption of one operation and λ is a correction term that depends on the network parameters and
the underlying hardware design. While previous researches focus on leveraging network architecture
search, pruning, or quantization to reduce OPs and Energy/OP (Sze et al., 2017), reducing λ
receives less attention.

In this work, we explore a new dimension to reduce the datapath energy by reducing λ. We show
that as most accelerators leverage spatial data reuse (Chen et al., 2016) and stream input operands
into the compute array, the sequence of the input operands significantly impacts the datapath energy.
Specifically, we find that the datapath energy is strongly correlated to the bit flips when streaming
the input operands. In this paper, we leverage the concept of hamming distance to formalize the bit
flip analysis. A series of post-training and training-aware techniques are proposed to co-design and
co-optimize the accelerator and the network to reduce the hamming distance of the input operand
sequence. Experimental results based on the post-layout simulation demonstrates on average 3.6×
datapath energy reduction and up to 8.51× energy reduction for certain layers.

∗Equal Contribution

EMC2: 5th Edition Co-located with NeurIPS’19



…

…

H x W

C

PE Array

K

Ps
umK

weight

weight

weight

weight
Ps

um

Ps
um

Ps
um

W[3, 0]

W[2, 0]

W[1, 0]

W[0, 0]

K

C

x
A[3, 0]A[2, 0]A[1, 0]A[0, 0]

C

H x W

H x W

C

K

W[3, 1]

W[2, 1]

W[1, 1]

W[0, 1]

W[3, 2]

W[2, 2]

W[1, 2]

W[0, 2]

W[3, 3]

W[2, 3]

W[1, 3]

W[0, 3]

A[3, 1]A[2, 1]A[1, 1]A[0, 1]
A[3, 2]A[2, 2]A[1, 2]A[0, 2]
A[3, 3]A[2, 3]A[1, 3]A[0, 3]

A[3, 0]A[2, 0]A[1, 0]A[0, 0]

A[3, 1]A[2, 1]A[1, 1]A[0, 1]

A[3, 2]

A[2, 2]A[1, 2]A[0, 2]

A[3, 3]

A[2, 3]

A[1, 3]A[0, 3]

W[3, 0] W[2, 0] W[1, 0] W[0, 0]

W[3, 1] W[2, 1] W[1, 1] W[0, 1]

W[3, 2] W[2, 2] W[1, 2] W[0, 2]

W[3, 3] W[2, 3] W[1, 3] W[0, 3]

(a)

(b)

(c)

Figure 1: Mapping 1-by-1 convolution to the input stationary array
(H,W,K,C denotes the output height, width, output channel, and
input channel dimension, respectively).

0 1 2 3 4

·105

0

100

200

300

400

500

Total Bit Flips

N
or
m
al
iz
ed

E
n
er
gy

Simulation Data
Linear Regression

Figure 2: Total bit flips of the
weight sequence and the datap-
ath energy demonstrate strong
correlation.

2 Background and Motivation

Modern DNN accelerators leverage specialized processing dataflows to encourage data reuse and
reduce memory access (Sze et al., 2017). Figure 1(a) shows a widely used input stationary design.
Consider the example of a 1-by-1 convolution in Figure 1(b). The weights are streamed into the array
and can be reused horizontally, while the partial sums are accumulated spatially across the column.

The energy consumption of the accelerator is composed of the datapath energy (including the
arithmetic computation energy and the data propagation energy among compute units), the memory
access energy and the control energy. With the trend of aggressive operand quantization (< 8 bit) and
specially designed dataflows for data reuse, datapath energy can consume 40-70% of the total energy
in many state-of-the-art accelerator designs (Andri et al., 2016; Gao et al., 2017; Park et al., 2018).

The datapath energy mainly comprises of the switching energy and glitch energy, both of which are
caused by the circuit nodes switching from 0 to 1 or from 1 to 0, denoted as bit flips. For the datapath,
the bit flips are determined by the value and the streaming pattern of the input operands, i.e., weights,
input activations, and partial sums. Because the activation and partial sums are input dependent, we
focus on analyzing the impact of weight matrices. Specifically, we use the post-layout simulation to
evaluate the relation between the bit flips of streaming the weight matrices and the datapath energy.
As shown in Figure 2, the total bit flips and datapath energy demonstrate a strong correlation. Hence,
to reduce the datapath energy, in this paper, we propose post-training and training-aware techniques
to reduce the bit flips of streaming the weight matrices.

3 Hamming Distance Optimization

In this section, we formalize the concept of bit flips and propose post-training and training-aware
techniques to minimize the bit flips of the streaming weights. We use the input stationary compute
array (e.g., Figure 1(a)) as an example throughout the analysis but the definition, analysis, and
conclusion can be easily applied to other dataflow schemes once the weights are streamed into the
compute array.

Problem Formulation We define the hamming distance between two B-bit numbers a and b as

HD(a, b) =

B∑
i=1

Biti(a)⊕ Biti(b),

where⊕ denotes the XOR operation and Biti(·) is the function that extracts the i-th bit of the number.

Consider a weight matrix W ∈ RK×C2. As the input stationary dataflow unrolls the input channel
dimension (C) along the compute array column direction and stream the weights along different

2We assume Fx = Fy = 1 for the weight matrix in this case, but the definition and analysis can be easily
extended to cases where Fx and Fy are larger than 1.

2



output channels (K) in temporal sequence, we define the hamming distance of streaming W as

HD(W ) =

K−1∑
j=1

HD(W [j, :],W [j + 1, :]) =

K−1∑
j=1

C∑
i=1

HD(W [j, i],W [j + 1, i])

Output Channel Reordering A straightforward technique to minimize HD(W ) is to reorder the
sequence of W streaming into the compute array. Let S denote the sequence of output channels and
HDS(W ) denote the hamming distance of streaming W following the sequence S, then, we have

HDS(W ) =

K−1∑
j=1

C∑
i=1

HD(W [S[j], i],W [S[j + 1], i]).

The output channel reordering problem is defined as follows.

Problem 1 (Output Channel Reordering) Given a weight matrix W ∈ RK×C , find S∗ such that
HDS∗(W ) is minimized, i.e.,

S∗ = argminSHDS(W ).

The reordering problem can be mapped to the Traveling Salesman Problem (TSP), the complexity
of which scales exponentially with the number of output channels. We propose a greedy reordering
algorithm to compute S∗: we initialize the sequence S∗ by assigning the first output channel to
the starting position of S∗. Then, the channel with the smallest hamming distance compared to the
previous channel is added to S∗. The complexity of the algorithm scales quadratically with K.

Input Channel Clustering and Segmentation For the convolution layer with large C, limited by
the compute array size, not all the input channels can be streamed into the array simultaneously.
Hence, the weight matrices need to be segmented first. Instead of directly segmenting the matrices,
we propose to cluster the input channels first and then, compute the optimal sequence S∗ for each
sub-matrix separately.

Let {T1, . . . , Tt} denote the t clusters of the input channel. The input channel clustering problem is
then defined as follows.

Problem 2 (Input Channel Clustering) Given a weight matrixW ∈ RK×C , find t clusters T1, . . . , Tt
such that the total hamming distance of streaming each sub-matrix WTi

is minimized, i.e.,

min
T1,...,Tt

t∑
i=1

HDS∗
i
(WTi

)

s.t. S∗
i = argminSHDS(WTi)

Ti ∩ Tj = ∅ ∀i 6= j

∪ti=1 Ti = {1, . . . , C}

We propose the cluster-then-reorder algorithm, which is a greedy iterative method to solve the nested
optimization problem: the input channels are first randomly assigned to t clusters, then, the algorithm
alternates between the following two steps:

• Update step: for each cluster i ∈ {1, . . . , t}, compute the optimal sequence Si.
• Assignment step: for each channel l ∈ {1, . . . , C}, evaluate the hamming distance following

the optimal sequence of each cluster and assign l to the cluster i with the smallest hamming
distance.

Hamming Distance-Aware Training We also propose a hamming distance-aware training proce-
dure to further reduce the hamming distance when streaming W . The basic idea is to incorporate the
hamming distance into the loss function and encourage the hamming distance reduction:

L = LCE + λLHD(W ),

where LCE represents the original cross-entropy loss. λ is used to control the trade-off between the
accuracy and the hamming distance reduction.

3



Counter

Offset Index

Output BufferOutput Buffer
1

1

+

Base Addr

Accumulator

…Psum

(a)

Counter

Offset Index

Output BufferInput Buffer
1

1

Input 
Order 
LUT 2

Reordered Offset Index2

+

Base Addr

Accumulator

…Psum

(b)

Figure 3: LUT addition to the accumulation buffer to guarantee the correct accumulation and reorder
output activations.

Table 1: Training-aware hamming distance optimization for MobileNetV2 on Cifar10 and Cifar100.

DATASET λ
TOP-1
ACC

TOP-5
ACC

AVERAGE HD
REDUCTION

AVERAGE ENERGY
REDUCTION

CIFAR10 0.0 94.38 99.82 1.0× 1.0×
1× 10−4 94.22 99.00 7.55× 6.63×

CIFAR100
0.0 78.21 94.53 1.0× 1.0×

1× 10−5 77.98 94.20 1.24× 1.26×
7× 10−5 77.62 94.26 2.00× 1.86×

However, there are two main problems with LHD(W ): 1) LHD is not differentiable and 2) the
input channel clusters and output channel orders are needed to compute LHD and get updated in the
training process. We leverage the straight-through estimator to approximate the gradients of LHD.
Meanwhile, after each epoch of training, we leverage the cluster-then-reorder algorithm to cluster the
input channels and reorder the output channels.

4 Hardware Support

The direct reordering algorithm only switches the weights along the output channel channels, and
hence, change the sequence of the output channel generation. A post-training processing of the model
to re-arrange the channels is sufficient with no hardware support needed.

The cluster-then-reorder algorithm clusters the input channels into groups and reorders the output
channels for each group separately, which has two implications: 1) the sequences of the output channel
generation are different for different clusters; and 2) the sequence of output channel generation may
be different than the required sequence of input channel streaming in the next layer.

We add an output address lookup table (LUT) to the accumulation buffer to support the cluster-then-
reorder algorithm. As shown in Figure 3, the address LUT translates the index of the counter in
the accumulator to the actual address for accumulation. The LUT can help guarantee the correct
accumulation of partial sums across different input channel clusters and reorder the output activations
for the next layer. If the output buffer depth to be D, the LUT needs to have at least D entries and
each entry needs to have log2D bits. For a reasonable output buffer depth, e.g., 1024, the LUT
SRAM size is less than 2 KB, which is very small and thus has negligible energy and area overhead.

5 Experimental Results

Experimental Setup We select the 1-by-1 convolution layers in MobileNetV2 (Sandler et al., 2018)
and the 3-by-3 convolution layers in ResNet26 (He et al., 2016) trained on the Cifar10 and Cifar100
dataset for the evaluation. To evaluate the datapath energy, we use post-layout simulation. We
designed an input-stationary systolic array with 8 rows and 8 columns. Each compute unit supports
8-bit activations and 4-bit weights. The leakage energy is ignored in the evaluation.

Post-Training Hamming Distance Optimization We first compare the effectiveness of the post-
training hamming distance optimization algorithms, i.e., the direct reorder and cluster-then-reorder
algorithms. As shown in Figure 4, the direct reordering algorithm achieves 1.2 × hamming distance

4



8 16 32 64 8 16 32 64
0.8

1

1.2

1.4

1.6

1.8

2

Channels/Cluster

A
ve

ra
ge

H
D

R
ed

u
ct

io
n

Baseline
Direct Reorder

Cluster-then-Reorder

MobileNetV2

ResNet26

Figure 4: Comparison of the post-training op-
timization techniques for HD reduction on Mo-
bileNetV2 (left) and ResNet26 (right).

AVERAGE HD
REDUCTION

AVERAGE ENERGY
REDUCTION

BASELINE 1.0× 1.0×
λ = 0, CTR 1.96× 1.84×
λ = 7× 10−5 2.00× 1.86×

λ = 7× 10−5 , CTR 3.79× 2.85×

Figure 5: Average hamming distance and
energy reduction of the combined methods
(CTR is short for the cluster-then-reorder).

reduction for MobileNetV2 and ResNet26. The cluster-and-reorder algorithm reduces the hamming
distance by 1.96× and 1.54× for MobileNetV2 and ResNet26, respectively, when the number of
input channels per cluster is 8, which translate to 1.62× and 1.49× datapath energy reduction.

Training-Aware Hamming Distance Optimization We select MobileNetV2 and train the network
on Cifar10 and Cifar100 datasets. We constrain the accuracy degradation within 1%. As shown in
Table 1, on Cifar10 dataset, the average hamming distance can be reduced by 7.55×, which leads
to 6.63× reduction of the average datapath energy across layers. On Cifar100 dataset, the average
hamming distance reduction and the average energy reduction are 2.00× and 1.86×, respectively.

Combined Hamming Distance Optimization As shown in Table 5, by combining the proposed
optimization techniques, for MobileNetV2 trained on Cifar100, the average hamming distance can be
reduced by 3.79× and the average datapath energy can be reduced by 2.85×.

6 Conclusion

Datapath energy of a neural network accelerator is heavily dependent on the hamming distance of
streaming the input operands. The paper proposes hamming-distance-aware training and post-training
algorithms to reduce the hamming distance and the datapath energy. Evaluation with MobileNetV2
and ResNet neural networks shows that our proposed methods achieve 2.85× datapath energy
reduction on average and up to 8.51× datapath energy reduction for certain layers.

References
Andri, Renzo, Cavigelli, Lukas, Rossi, Davide, and Benini, Luca. Yodann: An ultra-low power

convolutional neural network accelerator based on binary weights. ISVLSI, pp. 236–241, 2016.
Chen, Yu-Hsin, Krishna, Tushar, Emer, Joel S, and Sze, Vivienne. Eyeriss: An energy-efficient

reconfigurable accelerator for deep convolutional neural networks. JSSC, 52(1):127–138, 2016.
Gao, Mingyu, Pu, Jing, Yang, Xuan, Horowitz, Mark, and Kozyrakis, Christos. Tetris: Scalable and

efficient neural network acceleration with 3d memory. In ASPLOS, 2017.
He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian. Deep residual learning for image

recognition. In CVPR, pp. 770–778, 2016.
Jouppi, Norman P., Young, Cliff, Patil, Nishant, Patterson, David, and et al. In-datacenter performance

analysis of a tensor processing unit. In ISCA, 2017.
LeCun, Yann, Bengio, Yoshua, and Hinton, Geoffrey. Deep learning. nature, 521(7553):436, 2015.
Park, Eunhyeok, Kim, Dongyoung, and Yoo, Sungjoo. Energy-efficient neural network accelerator

based on outlier-aware low-precision computation. In ISCA, 2018.
Sandler, Mark, Howard, Andrew, Zhu, Menglong, Zhmoginov, Andrey, and Chen, Liang-Chieh.

Mobilenetv2: Inverted residuals and linear bottlenecks. In CVPR, pp. 4510–4520, 2018.
Sze, V., Chen, Y., Yang, T., and Emer, J. S. Efficient processing of deep neural networks: A tutorial

and survey. Proceedings of the IEEE, 105(12), 2017.
Wu, Carole-Jean, Brooks, David, Chen, Kevin, Chen, Douglas, Choudhury, Sy, Dukhan, Marat,

Hazelwood, Kim, Isaac, Eldad, Jia, Yangqing, Jia, Bill, et al. Machine learning at facebook:
Understanding inference at the edge. In HPCA, pp. 331–344. IEEE, 2019.

5


	Introduction
	Background and Motivation
	Hamming Distance Optimization
	Hardware Support
	Experimental Results
	Conclusion

