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Abstract

There is a significant performance gap between Binary Neural Networks (BNNs)
and floating point Deep Neural Networks (DNNs). We propose an improved binary
training method, by introducing a new regularization function that encourages
training weights around binary values. In addition, we add trainable scaling factors
to our regularization functions. We also introduce an improved approximation of
the derivative of the sign activation function in the backward computation. These
modifications are based on linear operations that are easily implementable into the
binary training framework. Experimental results on ImageNet shows our method
outperforms the traditional BNN method and XNOR-net.

1 Introduction

DNNs are heavy to compute on low resource devices. There have been several approaches developed
to overcome this issue, such as network pruning [LeCun et al., 1990], architecture design [Sandler
et al., 2018], and quantization [Courbariaux et al., 2015, Han et al., 2015]. In particular, weight
compression using quantization can achieve very large savings in memory, where binary (1-bit), and
ternary (2-bit) approaches have been shown to obtain competitive accuracy as compared to their full
precision counterpart [Hubara et al., 2018, Zhu et al., 2016, Tang et al., 2017].

Our contribution consists of three ideas that can be easily implemented in the binary training
framework presented by Hubara et al. [2018] to improve convergence and generalization of binary
neural networks. First, we improve the straight-through estimator introduced in Hubara et al. [2018],
Second, we propose a new regularization function that encourage training weights around binary
values. Third, a scaling factor is introduced in the regularization function as well as network building
blocks to mitigate accuracy drop due to hard binarization.

Training a binary neural network faces two major challenges: quantizing the weights, and the activa-
tion functions. As both weights and activations are binary, the traditional continuous optimization
methods such as SGD cannot be directly applied. Instead, a continuous approximation is used for the
sign activation during the backward pass.

The general training framework is depicted in Figure 1. In Hubara et al. [2018], the weights are
quantized by using the sign function which is +1 if w > 0 and −1 otherwise.

Binary training use heuristics to approximating the gradient of a neuron,
dL(w)

dw
≈ dL

dw
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w=wb

1{|w|≤1} (1)
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where L is the loss function, 1(.) is the indicator function and wb is the binarized weight. The
gradients in the backward pass are then applied to weights that are within [−1,+1]. The training
process is summarized in Figure 1. As weights undergo gradient updates, they are eventually pushed
out of the center region and instead make two modes, one at −1 and another at +1.
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Figure 1: Binary training where arrows indicate operands flowing into operations or blocks.

2 Gradient Approximation

Our first modification is on closing the discrepancy between the forward pass and backward pass.
Originally, the sign function derivative is approximated using the htanh(x) activation derivative as
shown in Figure 2. Instead, we modify the Swish-like activation [Ramachandran et al., 2017, Elfwing
et al., 2018, Hendrycks and Gimpel, 2016], which has been shown to outperform other activation
functions on various tasks. The modifications are performed by taking its derivative and centering
it around 0. Let SSβ(x) = 2σ(βx) [1 + βx{1− σ(βx)}] − 1, where σ(z) is the sigmoid function
and the scale β > 0 controls how fast the activation function asymptotes to −1 and +1. The β
parameter can be learned by the network or be hand-tuned as a hyperparameter. As opposed to the
Swish function, where it is unbounded on the right side, the modification makes it bounded, a more
valid approximator of the sign function so we call this activation SignSwish or SSwish, see Figure 2.
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Figure 2: Forward and backward approximations. The forward and backward functions of SignSwish
SSβ(x) for β = 1. and β = 5.

Hubara et al. [2018] noted that the Straight-through Estimator (STE) fails to learn weights near the
borders of −1 and +1. As depicted in Figure 2, our proposed SignSwish activation alleviates this
issue, as it remains differentiable near −1 and +1 allowing weights to change signs during training if
necessary.
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Note that the derivative dSSβ(x)
dx is zero at two points, controlled by β. Indeed, it is simple to show

that the derivative is zero for x ≈ ±2.4/β. By adjusting this parameter, it is possible to adjust the
location at which the gradients start saturating, in contrast with the STE estimators where it is fixed.

3 Regularization function

In general, a regularization term is added to a model to prevent over-fitting and to obtain robust
generalization. The two most commonly used regularization terms are L1 and L2 norms. If one were
to embed these regularization functions in binary training, it would encourage the weights to be near
zero, though this does not align with the objective of a binary network. A regularization function
for binary networks should vanish upon the quantized values. Following this intuition, we define a
function that encourages the weights around −1 and +1. The Manhattan R1(.) and Euclidean R2(.)
regularization functions are defined as

R1(w) = |α− |w||, R2(w) = (α− |w|)2, (2)

where α ∈ IR+. In Figure 3, we depict the different regularization terms to help with intuition.
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Figure 3: Regularization functions for α = 0.5 (solid line) and α = 1 (dashed line).

These regularization functions encode a quantization structure, when added to the overall loss function
of the network encouraging weights to binary values. The difference between the two is in the rate at
which weights are penalized when far from the binary objective, L1 linearly penalizes the weights
and is non-smooth compared to the L2 version where weights are penalized quadritically. We further
relax the hard thresholding of binary values {−1, 1} by introducing scales α in the regularization
function. This results in a symmetric regularization function with two minimums, one at −α and
another at +α. The scales are then added to the networks and multiplied into the weights after the
binarization operation. As these scales are introduced in the regularization function and are embedded
into the layers of the network they can be learned using back-propagation. This is in contrast with
the scales introduced in Rastegari et al. [2016], where they compute the scales dynamically during
training using the statistics of the weights after every training batch. As depicted in Figure 3, in the
case of α = 1, the weights are penalized at varying degrees upon moving away from the objective
quantization values, in this case, {−1,+1}.

4 Training Procedure

Combining both the regularization and modified STE ideas, we adapt the training procedure by
replacing the sign backward approximation with that of the derivative of SSβ activation (??). During
training, the real weights are no longer clipped as in BNN training, as the network can back-propagate
through the SSβ activation and update the weights correspondingly.

Additional scales are introduced to the network, which multiplies into the weights of the layers. The
regularization terms introduced are then added to the total loss function,

J(W, b) = L(W, b) + λt
∑
h

R(Wh, αh), (3)
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where L(W, b) is the cost function, W and b are the sets of all weights and biases in the network, Wh

is the set weights at layer h and αh is the corresponding scaling factor.

The scale α is a single scalar per layer, or as proposed in Rastegari et al. [2016] is a scalar for
each filter in a convolutional layer. For example, given a CNN block with weight dimensionality
(Cin, Cout, H,W ), where Cin is the number of input channels, Cout is the number of output channels,
and H , W , the height and width of the filter respectively, then the scale parameter would be a vector
of dimension Cout, that factors into each filter.

As the scales are learned jointly with the network through back-propagation, it is important to
initialize them appropriately. In the case of the Manhattan penalizing term (2), given a scale factor α
and a weight filter, the objective is to solve

min
α

∑
h,w

∣∣∣α− |Wh,w|
∣∣∣, min

α

∑
h,w

(α− |Wh,w|)2 (4)

The minimum of the above functions are

α∗ = median(|W |), α∗ = mean(|W |) (5)

depending if the Manhattan or Euclidean regularization is used (2). The Euclidean regularization
coincides with the scaling factor derived in Rastegari et al. [2016]. The difference here is that we
have the choice to embed it in back-propagation in our framework, as opposed to computing the
values dynamically.

5 Experimental Results

Table 1: Top-1 and top-5 accuracies (in percentage) on ImageNet dataset, of different combinations
of the proposed technical novelties on different architectures.

Reg. Activation AlexNet Resnet-18

Top-1 Top-5 Top-1 Top-5

SS5 46.11 75.70 52.64 72.98
R1 SS10 46.08 75.75 51.13 74.94

htanh 41.58 69.90 50.72 73.48

SS5 45.62 70.13 53.01 72.55
R2 SS10 45.79 75.06 49.06 70.25

htanh 40.68 68.88 48.13 72.72

SS5 45.25 75.30 43.23 68.51
None SS10 45.60 75.30 44.50 64.54

htanh 39.18 69.88 42.46 67.56

We evaluate the performance of our training method on two architectures: AlexNet and Resnet-18 [He
et al., 2016] on ImageNet [Hubara et al., 2018, Rastegari et al., 2016, Tang et al., 2017]. Following
previous work, we used batch-normalization before each activation function. Additionally, we keep
the first and last layers to be in full precision, as we lose 2− 3% accuracy otherwise. This approach
is followed by other binary methods that we compare to [Hubara et al., 2018, Rastegari et al., 2016,
Tang et al., 2017]. The results are summarized in Table 1. In all the experiments involving R1

regularization we set the λ to 10−7 and R2 regularization in ranges of 10−5 − 10−7. Also, in every
network, the scales are introduced per filter in convolutional layers, and per column in fully connected
layers. The weights are initialized using a pre-trained model with htan activation function as done
in Liu et al. [2018]. Then the learning rate for AlexNet is set to 2.33× 10−3 and multiplied by 0.1
at the 12th and 18th epochs for a total of 25 epochs trained. For the 18-layers ResNet, the learning
rate is started from 0.01 and multiplied by 0.1 at the 10th, 20th and 30th epochs. On the ImageNet
dataset, we run a small ablation study of our regularized binary network training method with fixed β
parameters.
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Table 2: Comparison of top-1 and top-5 accuracies of our method with BinaryNet, XNOR-Net and
ABC-Net on ImageNet, summarized from Table 1. The results of BNN, XNOR, & ABC-Net are
reported from the corresponding papers [Rastegari et al., 2016, Hubara et al., 2018, Tang et al., 2017].
Results for ABC-NET on AlexNet were not available, and so is not reported.

Method AlexNet Resnet-18

Top-1 Top-5 Top-1 Top-5

Ours 46.1% 75.7% 53.0% 72.6%
BinaryNet 41.2% 65.6% 42.2% 67.1%
XNOR-Net 44.2% 69.2% 51.2% 73.2%
ABC-Net - - 42.7% 67.6%

Full-Precision 56.6% 80.2% 69.3% 89.2%
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