
Dynamic Channel Execution: on-device Learning
Method for Finding Compact Networks

Simeon E. Spasov Pietro Liò
Department of Computer Science and Technology, University of Cambridge

ses88@cam.ac.uk, pl219@cam.ac.uk

Abstract

Existing methods for reducing the computational burden of neural networks at run-
time, such as parameter pruning or dynamic computational path selection, focus
solely on improving computational efficiency during inference. On the other hand,
in this work, we propose a novel method which reduces the memory footprint and
number of computing operations required for training and inference. We propose
a framework integrated with the general training process which can identify a
subnetwork within a baseline model which suffers from little or no performance
degradation. Given a hard parameter constraint, our method constructs a compu-
tational path comprising only highly salient convolutional filters at each training
iteration. Our methodology is designed such that a resource-constrained device
would run forward and backward passes only on this compact network. As training
evolves our algorithms learns to correctly identify the set of most salient channels.
We validate our approach empirically on state-of-the-art CNNs - VGGNet, ResNet
and DenseNet, and on several image classification datasets. Results demonstrate
our framework for dynamic channel execution identifies compact subnetworks
which reduce the computational cost up to 4× and parameter count up to 9×, thus
enabling efficient on-device learning.

1 Introduction

In recent years, network architectures have become deeper and more complex, yielding highly
overparametrized models with a higher memory footprint and many floating-point operations. These
requirements have restricted the application of CNNs on resource-constrained devices. Therefore,
many techniques, such as pruning [1], which eliminate unnecesary parameters at run-time have been
studied. These current methods have solely focused on making inference more cost-efficient. In
this work, we investigate how to lower the memory and computational demands of CNNs during
training as well as inference. Our proposed framework considers the following scenario: given a hard
parameter count constraint, how can we identify a computational path of convolutional filters in a
CNN, i.e. a subnetwork contained within a baseline model, which results in minimal or no loss in
performance? Our methodology is integrated in the training process by selectively activating and
executing a subset of all convolutional channels at each training step (see Fig. 1). This is equivalent
to introducing a pattern of structural sparsity at the filter level in the baseline network model at each
training step. Hence, our methodology can be viewed as an attempt to train a structurally sparse
network from scratch without firstly identifying "winning tickets" via pruning as in the Lottery Ticket
Hypothesis [2] but rather by finding highly salient filters on the fly. Alternatively, our method can
also be used as an efficient on-device learning technique since it reduces the computational and
memory requirements for training. In this use case we assume that at each iteration only the compact
subnetwork is copied onto the training device performing the forward and backward passes.

EMC2: 5th Edition Co-located with NIPS’19



In our proposed methodology training is performed as follows: firstly, we formulate the channel
selection problem at each training iteration as a combinatorial multi-armed bandit problem, where
each arm is a convolutional filter, and propose to use the combinatorial upper confidence bound
algorithm (CUCB) [3] to solve it. We use a saliency criterion introduced by [4] to track the relative
contribution of executed channels to the network performance. In our work we assume that a salient
channel ought to possess discriminative power regardless of its position in the network. Before each
training step we employ the CUCB algorithm to select a subset of channels to activate based on
the saliency information we have gathered from the beginning of the training process. We then run
forward and backward passes only on these activated channels, hence executing them and learning
their parameters. After identifying the most salient convolutional channels, we fine-tune their weights
after freezing the network topology. As an example, we were able to identify a subnetwork within
ResNet-50 trained on the SVHN dataset from scratch which outperforms the baseline model but
comprises 4× fewer parameters and utilizes 3× fewer floating-point operations.

2 Methodology

Run forward 
pass only on 

active channels
Select active 

channelsData
Backward pass: observe 
channel saliencies and 

update parameters

Fine-tune 
compact 
model

Training

Figure 1: Flowchart of the dynamic channel execu-
tion framework for efficient training.

We consider a supervised learning problem
with a set of training examples D = {X =
{x1, x2, . . . , xN},Y = {y1, y2, . . . , yN}}, where
x and y represent an input and a label, respec-
tively. Given a CNN model withL convolutional
layers, let each layer l ∈ 1 . . . L comprise Kl

channels, Ckl , where k ∈ 1 . . .Kl is the channel
index. In each training step t, we 1) sample a
batch of B data samples (x1:B , y1:B); 2) select
and activate a subset S of convolutional chan-
nels; 3) run a forward and a backward pass on the compact subnetwork, that is only on the active
channels; and 4) observe the revealed saliency estimates (SALkl,t) of the activated channels. The
saliency metric we employ was proposed by Molchanov et al. [4] and approximates the change in
loss incurred from removing a particular channel. We maintain an empirical channel saliency mean
µ̂kl as well as the number of times T kl each channel has been activated in all training steps so far.
More precisely, if channel Ckl has been activated T kl times by the end of training step t, then the value
of µ̂kl at the end of training step t is (

∑t
1 SAL

k
l,t)/T

k
l . In addition, it is assumed that the number of

channels to be activated in each training step, is predefined and set beforehand. After training the
network for a given number of iterations, we fix the subset of active channels by selecting the top
percentile according to their global rank of mean saliency estimates across all layers, and fine-tune
the model. This final fine-tuning stage can be viewed as operating solely in exploitation mode.

2.1 Dynamic channel selection mechanism

In the combinatorial multi-armed bandit problem setting we are given a system of arms, or con-
volutional channels in our work, each having unknown utility, that is an unknown distribution of
reward with an unknown mean. The task is to select a combination of arms so as to minimize the
difference in total expected reward between always playing the optimal super-arm (the combination
of arms), and playing super-arms according to the CUCB algorithm. We introduce two assumptions
in our framework: firstly, we disregard channel position and connectivity, and assess each channel’s
importance independently of the others. Secondly, we assume that the channels’ reward distributions,
which we derive from their estimated saliencies, are stationary and do not drift as we train. Our
modified version of the CUCB framework applied to dynamic channel selection is summarized in
Algorithm 1. The algorithm can be loosely divided in two stages: firstly, an initialization round of
exploring and creating an initial estimate of the channel saliencies, and a second stage where we start
exploiting and refining the initial saliency estimates to guide the channel selection procedure. Note
that during the second stage in step 7 we adjust the estimated channel saliencies to balance between
exploration and exploitation.

2



Algorithm 1 The CUCB algorithm applied to selective neural network channel execution
1: For each channel k in each convolutional layer l maintain: 1) T kl as the total number of times the

particular channel has been activated so far; 2) µ̂kl as the mean of all saliency estimates observed
so far.

2: For each channel k in each convolutional layer l, activate an arbitrary set of channels S, such that
Ckl ∈ S, run forward and backward passes through compact network, and update T kl and µ̂kl .

3: t← number of convolutional channels in network
4: for j=1. . . J do
5: for batch (x1:B , y1:B) in D do
6: t = t+ 1

7: For each channel Ckl , set µkl = µ̂kl +
√

3 ln t
2Tk

l

8: S ← top percentile of channels according to µkl
9: Activate channels in S

10: Run forward and backward passes through compact network
11: Update all T kl and µ̂kl
12: S ← top percentile of channels according to µ̂kl
13: Activate channels in S
14: Fine-tune final compact network

2.2 Estimating channel saliency

Our channel ranking approach is based on Molchanov et al. [4]. The intuition behind the approach
is approximating the change in the loss function from removing a particular channel, which was
active at training step t, via a first-order Taylor expansion. Let hkl be the feature map produced by the

channel Ckl and L be the training loss. The saliency estimate ˆSAL
k

l,t can be shown to be equal to:

ˆSAL
k

l,t =

∣∣∣∣∣ 1M
M∑
m=1

δL

δhkl,m
hkl,m

∣∣∣∣∣ , (1)

where M is the length of the vectorized feature map. Eq. 1 assumes independence between channel
parameters whereas in reality they are inter-connected. The computation of Eq. 1 is easy in practice
as it only requires the first derivative of the loss w.r.t each feature map element, i.e. δL

δhk
l,m

, which is

computed during backpropagation.

3 Experiments

In this section we empirically demonstrate the effectiveness of our framework for dynamic channel
selection during training. We conduct all experiments in PyTorch [5]. We evaluate the performance of
our method on three datasets: CIFAR-10, CIFAR-100 [6] and Street View House Number (SVHN) [7].
We evaluate our method for dynamic channel selection on three network architectures: VGGNet [8],
ResNet [9] and DenseNet [10]. We use a VGG-19 architecture of type "VGG-E", however we use only
a single fully connected layer (16conv + 1FC) [11]. For ResNet we employ a 50-layer architecture
with a bottleneck structure (ResNet-50). For DenseNet we use a 121-layer architecture with a growth
rate of 32 (DenseNet-121). We use batch normalization on all network models and remove all dropout
layers. We do not apply the dynamic channel selection procedure on fully connected layers as they
comprise only the final classification layer in our models. All network models are trained using
SGD with Nesterov momentum of 0.9 without dampening. The minibatch size we use is 64 for all
datasets. On the two CIFAR datasets we train for 160 epochs, and on the SVHN dataset for 20 epochs.
The initial learning rate is set at 0.1 and is divided by 10 at 50% and 75% of the training epochs.
We also use a weight decay of 10−4. We adopt the weight initialization introduced by [12]. After
training following the proposed framework, we fix the subset of active channels by selecting the most
salient ones across all layers. This compact model is fine-tuned by repeating the training procedure.
We evaluate the floating-point operations (FLOPs) and the number of parameters of our compact
networks using [13].

3



3.1 Results

We evaluate the dynamic channel selection framework on all combinations of datasets and network
architectures. We experiment with a ratio of active channels between 20% to 100% in 10% increments.
We perform all experiments three times and report averaged results.

(a) Test accuracy on CIFAR-10

20% 30% 40% 50% 60% 70% 80% 90% 100%
Active channels (%)

81

83

85

87

89

91

93

Te
st

 a
cc

ur
ac

y 
(%

)

VGG-19

Our framework
Random filter selection

29x 12x 7x 4x 3x 2x 1.5x 1.2x 1x
Parameter reduction

20% 30% 40% 50% 60% 70% 80% 90% 100%
Active channels (%)

81

83

85

87

89

91

93

Te
st

 a
cc

ur
ac

y 
(%

)

ResNet-50

Our framework
Random filter selection

9.2x 4.8x 3x 2.2x 1.7x 1.4x 1.2x 1.1x 1x
Parameter reduction

20% 30% 40% 50% 60% 70% 80% 90% 100%
Active channels (%)

81

83

85

87

89

91

93

Te
st

 a
cc

ur
ac

y 
(%

)

DenseNet-121

Our framework
Random filter selection

19x 9x 5x 3.4x 2.3x 1.75x 1.4x 1.1x 1x
Parameter reduction

(b) Test accuracy on CIFAR-100

20% 30% 40% 50% 60% 70% 80% 90% 100%
Active channels (%)

58
60
62
64
66
68
70
72
74

Te
st

 a
cc

ur
ac

y 
(%

)

VGG-19

Our framework
Random filter selection

28x 12x 7x 4.3x 3x 2x 1.6x 1.2x 1x
Parameter reduction

20% 30% 40% 50% 60% 70% 80% 90% 100%
Active channels (%)

58
60
62
64
66
68
70
72
74

Te
st

 a
cc

ur
ac

y 
(%

)

ResNet-50

Our framework
Random filter selection

8.6x 4.2x 2.6x 1.9x 1.5x 1.3x 1.2x 1.1x 1x
Parameter reduction

20% 30% 40% 50% 60% 70% 80% 90% 100%
Active channels (%)

58
60
62
64
66
68
70
72
74

Te
st

 a
cc

ur
ac

y 
(%

)

DenseNet-121

Our framework
Random filter selection

18x 9x 5x 3.4x 2.4x 1.75x 1.4x 1.1x 1x
Parameter reduction

(c) Test accuracy on SVHN

20% 30% 40% 50% 60% 70% 80% 90% 100%
Active channels (%)

90

91

92

93

94

95

96

Te
st

 a
cc

ur
ac

y 
(%

)

VGG-19

Our framework
Random filter selection

28x 12x 7x 4.5x 3x 2x 1.5x 1.2x 1x
Parameter reduction

20% 30% 40% 50% 60% 70% 80% 90% 100%
Active channels (%)

90

91

92

93

94

95

96

Te
st

 a
cc

ur
ac

y 
(%

)

ResNet-50

Our framework
Random filter selection

9.5x 5x 3.2x 2.4x 1.9x 1.6x 1.3x 1.2x 1x
Parameter reduction

20% 30% 40% 50% 60% 70% 80% 90% 100%
Active channels (%)

90

91

92

93

94

95

96

Te
st

 a
cc

ur
ac

y 
(%

)
DenseNet-121

Our framework
Random filter selection

18x 8x 4.7x 3x 2.2x 1.7x 1.4x 1.14x 1x
Parameter reduction

Figure 2: Comparing our proposed framework to random channel selection. The coloured areas
denote standard deviation. All experiments were run three times. Our CUCB-based framework
clearly outperforms random channel selection in 8 of the 9 experiments.

Regularization effect. For all datasets and network models the highest test accuracy is achieved
when the percentage of active channels is typically between 70%-90%. The only exception is ResNet-
50 evaluated on the SVHN dataset which achieves peak classification when 30% of the channels are
active. We hypothesize that the increase in accuracy is due to the regularization effect of the dynamic
channel selection procedure which could be viewed as feature selection applied on the hidden layers.

Parameter and FLOP reduction. Since the best performing compact models use active channels
between 70%-90%, their parameter count and FLOPs are also lower compared to baseline models.
For example, on CIFAR-10 the best performing VGG model achieves 2× parameter reduction.
DenseNet-121 and especially ResNet-50 are unable to achieve such parameter-efficiency owing to
their bottleneck architecture. More specifically, the skip connections in ResNet-50 based on the
addition operation require that certain convolutional layers have the same number of output channels.
We observe comparable accuracy to baseline even for very compact networks (30%− 40% channels)
on the CIFAR-10 and SVHN datasets with parameter reduction between 3×-7× and FLOPs reduction
2×-5×. Moreover, ResNet-50 can achieve over 9× parameter reduction on CIFAR-10 and SVHN
while maintaining baseline-level performance. Nevertheless, the very compact networks perform
worse than baseline on the CIFAR-100 dataset (2%-3% accuracy drop for models with 30%-40%
active channels). We conjecture this is because CIFAR-100 contains 100 classes and extra model
capacity is required.

4



Results on CUCB vs random channel selection. We performed experiments where instead of
activating the channels with the highest mean estimated saliency prior to fine-tuning, we randomly
select a subset of channels to activate. It can be observed that randomly selecting channels to fine-tune
performs worse in general than our proposed methodology. The difference in performance becomes
more significant as the active channels become fewer. The sequential VGG-19 architecture adheres
to this behaviour on all datasets. For ResNet-50 and DenseNet-121 the performance of models fine-
tuned on randomly selected channels is on occasion on par with our framework. More specifically, on
CIFAR-10 when the active channels are ≥ 70%, and on SVHN when random channel selection even
outperforms our framework on a few instances. We hypothesize our methodology, which is based on
the assumption of independence between channels, might be adversely affected by architectures with
skip connections across layers, such as ResNet and DenseNet.

4 Conclusion

In this paper we have proposed an efficient on-device learning methodology to dynamically identify
and utilize only the most salient convolutional channels at each training step given a hard parameter
constraint. As a result, we can limit the memory and computational burden both during training and
inference. Our method tracks the relative importance of each channel, and at each training step a
subset of the most salient channels are activated and executed according to the combinatorial upper
confidence bound algorithm. Experimental results on several datasets and network architectures
reveal our framework is able to discover on-the-fly compact networks with lower computational cost
compared to baseline (up to 4×) and parameter count (up to 9×) with little or no loss in accuracy.

References
[1] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for efficient

neural network. In Advances in Neural Information Processing Systems, pages 1135–1143. 2015.

[2] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019, 2019.

[3] Wei Chen, Yajun Wang, and Yang Yuan. Combinatorial multi-armed bandit: General framework, results
and applications. In International Conference on International Conference on Machine Learning - Volume
28, pages I–151–I–159. JMLR.org, 2013.

[4] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional neural
networks for resource efficient transfer learning. In International Conference for Learning Representations,
2017.

[5] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. In NIPS-W,
2017.

[6] Alex Krizhevsky. Learning multiple layers of features from tiny images. University of Toronto, 05 2012.

[7] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading digits in
natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning and Unsupervised
Feature Learning, 2011.

[8] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. In International Conference on Learning Representations, Conference Track Proceedings, 2015.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pages 770–778, 2016.

[10] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected
convolutional networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR,
pages 2261–2269, 2017.

[11] Fu Cheng-Yang. pytorch-vgg-cifar10. https://github.com/chengyangfu/pytorch-vgg-cifar10, 2019.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In 2015 IEEE International Conference on Computer
Vision, pages 1026–1034, 2015.

[13] Ligeng Zhu. Thop: Pytorch-opcounter. https://github.com/Lyken17/pytorch-OpCounter, 2019.

5


	Introduction
	Methodology
	Dynamic channel selection mechanism
	Estimating channel saliency

	Experiments
	Results

	Conclusion

