
Supported-BinaryNet: Bitcell Array-based Weight
Supports for Dynamic Accuracy-Latency Trade-offs

in SRAM-based Binarized Neural Network

Shamma Nasrin
University of Illinois at Chicago

Chicago, IL 60607
snasri2@uic.edu

Srikanth Ramakrishna
University of Illinois at Chicago

Chicago, IL 60607
sramak7@uic.edu

Theja Tulabandhula
University of Illinois at Chicago

Chicago, IL 60607
theja@uic.edu

Amit Ranjan Trivedi
University of Illinois at Chicago

Chicago, IL 60607
amitrt@uic.edu

Abstract

In this work, we introduce bitcell array-based support parameters to improve the
prediction accuracy of SRAM-based binarized neural network (SRAM-BNN).
Our approach enhances the training weight space of SRAM-BNN while requiring
minimal overheads to a typical design. More flexibility of the weight space leads
to higher prediction accuracy in our design. We adapt row digital-to-analog (DAC)
converter, and computing flow in SRAM-BNN for bitcell array-based weight
supports. Using the discussed interventions, our scheme also allows a dynamic
trade-off of accuracy against latency to address dynamic latency constraints in
typical real-time applications. We specifically discuss results on two training cases:
(i) learning of support parameters on a pre-trained BNN and (ii) simultaneous
learning of supports and weight binarization. In the former case, our approach
reduces classification error in MNIST by 35.71% (error rate decreases from 1.4% to
0.91%). In the latter case, the error is reduced by 27.65% (error rate decreases from
1.4% to 1.13%). To reduce the power overheads, we propose a dynamic drop out a
part of the support parameters. Our architecture can drop out 52% of the bitcell
array-based support parameters without losing accuracy. We also characterize our
design under varying degrees of process variability in the transistors.

1 Introduction

Machine learning (ML) algorithms use growing volume and variety of data, faster computing power,
and efficient storage for highly accurate predictions and decision-making in complex computing
problems. Consequently, ML is becoming an integral component of computational imaging, speech
processing

For any ML algorithm, the fundamental computational operations are multiplication and accumulation,
which create the energy bottleneck while designing a hardware accelerator. Notably, the number
of weights in even a moderate size network for real-world applications can be hundreds to tens of
thousands. In such networks, a typical von Neumann platform incurs high traffic to read weights
from the memories and to write back neuron output and partial sums. To overcome these limitations,
near-memory data processing has been explored where logic units are embedded closer to memories

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

R
o
w

 d
ec

o
d
er

Bitcell array

block (p×1)

Column select

ADC

Row DAC

Row DAC

Row DAC

Row DAC

IB,1

IB,2

IB,r

Digital vector

product

Row DAC with

independent IREF control

Neuron

Input

SW,1

SW,2

SW,r

Support

parameters

(a)

-a11+b11

a11+b11

a11+b11

-a11+b11

-a21+b21

a21+b21

a21+b21

-a21+b21

-an1+bn1

-

an1+bn1

an1+bn1

-an1+bn1

a1p+b1p

-a1p+b1p

-a2p+b2p

a2p+b2p

-anp+bnp

anp+bnp

1

1

-1

1

-1

-1

1

1

-1

1

-1

-1

-1 -1-1 1

1

-1

1

-1

1

-1

-1 -1

1 -1-1 -1

-1 11 -1

-1 1

1 -1

Binary weight matrix
Binary weights with

block-based supports

(b)

Figure 1: (a) SRAM architecture for bitcell array-based support parameters. Support parameters to enhance
weight space of binarized neural networks (BNNs) are stored in the buffer of row digital-to-analog converter
(DAC). Row DAC modulates bias-current to implement support parameter-based weight scaling in each bitcell
array block. (b) Introducing bitcell array-based support parameters in binarized weight matrix. Here, each block
of binary weight matrices is mapped to aw + b. a and b are learnable support parameters.

50 100 150 200
no of epoch

0.4

0.5

0.6

0.7

0.8

0.9

T
ra

in
in

g
lo

ss

block size 64#1
block size 16#1
block size 8#1
block size 2#1
Full Precision

4#1 8#1 16#1 32#1 64#1
block size

97

98

99

100

A
cc

ur
ac

y(
%

) pretrained
random

(b)

Full 8 6 5 4 3
Quantization bits

85

90

95

A
cc

ur
ac

y(
%

)

784#2048#2048#10
784#1024#1024#10

(c)
Sparse support parameter a

(d)

10 20 30 40 50 60 70
Support parameter dropped(%)

96.5

97

97.5

98

98.5

99

A
cc

ur
ac

y(
%

)

Full precision
8-bit precision
6-bit precision
4-bit precision

(e)

Figure 2: (a) Learning curve of fully connected neural network for MNIST training data set. (b) Accuracy on
MNIST by performing support optimization on weights {-1,+1} to {b,a} for various block sizes. We show
results for two cases: (1) initialized with pre-trained network and (2) initialized randomly.(c) Accuracy with
different bit precision of the support parameters. (d) Sparse support parameter a of the 1st layer of the fully
connected layer for 52% support parameter drop. (e) Accuracy on MNIST data-set for varying percentage of
support parameter drop with different bit precision of ε.

to minimize communication path length. [1] and [2] introduce advanced memory technology like
embedded DRAM (eDRAM) in near-memory data processing to reduce the access energy.

Although techniques such as near-memory data processing and inclusion of advanced memory
architecture such as eDRAM and 3-D memories minimize the data transmission demand between
memory and logic, the eventual solution is to seamlessly merge logic with memory. In-SRAM neural
networks have been discussed in [6] to follow such in-memory computing. In these works, the same
SRAM array storing the network weights can also be used to locally compute the vector product of
neuron input and weight matrices. However, a key challenge in the current designs is that the network
weights must be binarized [7]. Meanwhile, weight binarization leads to higher inaccuracy by limiting
the flexibility of weight space. Although operation with multi-bit precision weights is possible for
in-SRAM neural networks, the complexity and power of the implementation increase considerably;
thereby, quickly decreasing the benefits of in-memory computations.

In this paper, we propose a novel architecture of SRAM-BNN with bitcell array-based support
parameters (Fig.1(a)). In this scheme, we partition the binary weight matrix into blocks where
the partial-sum output of each block is augmented with support parameters. Weight partitioning is
considerate of the physical design and mapping to SRAM, thereby requires minimum interventions
to introduce support parameters for each block while maximizing the flexibility of training weight-
space. Bitcell array-based supports are implemented by modifying the design of digital-to-analog
converter (DAC) at SRAM rows. We also discuss a novel control flow for SRAM-BNN where
energy and accuracy can be traded-off dynamically. For MNIST dataset, the architecture achieves
99.24% prediction accuracy with a pre-trained initial network and 98.87% accuracy with a randomly
initialized network, which is higher than the previous works [5].

Sec. II introduces support vectors in SRAM-BNN. Sec. III implements SRAM-BNN with support
vectors. Sec. IV discusses the simulation results. Sec. V concludes.

2

2 SRAM Bitcell Array-based Support Vectors

(Fig.1(b)) shows the overview of bitcell array-based support parameters in a binarized weight matrix.
Consider a fully-connected weight matrix of dimensions m × n. We segment the matrix so that
each column of the matrix is divided into smaller blocks. For a block size p, there will be dm/pe
sub-blocks for each column. Support parameters [aij , bij] are introduced for each block Bij . Using
the support parameters, weight values w ∈ [−1, 1] of a block Bij are mapped to new values such that
w ← aij × w + bij . Therefore, using the support parameters, the weight space of BNN is enhanced.
At smaller block size, more parameters are introduced, thereby leading to more flexibility in the
weight space. Also, note that at p = 2, the weight space becomes equivalent to the full-precision
case.

Typical SRAM-BNN operates the weight matrix column by column and breaks a larger matrix
into multiple SRAM arrays. Notably, the above support vectors are considerate to such physical
implementation of weight matrix on SRAM array – a feature that we will leverage in the later
sections to retain the hardware simplicity while increasing the flexibility of training weight space. The
algorithm 1 describes the approach to get the optimized support vector parameters. In the algorithm,
we describe training the network both from a given binary weight matrix and from a random weight
initialization.

Algorithm 1: Algorithm for support learning in SRAM-BNN with random weight initialization. C
is the cost function and L is the number of layers. Dimensions of sub-block and weight matrix are
p× 1 and m× n, respectively, and r is the total number of sub-blocks. In this algorithm F(.) is the
activation function. The function Binarize() shows how we binarize the weight matrix [5]. Update()
is the function to update the parameters. Here, We use the ADAM’s update rule [6]
Requirement: a mini batch of inputs and targets (X,T), previous weights W , Previous support
parameters A,B, and previous learning rate η.

Given: Input to the layer X ∈ Rm×1,
1.1 Forward Propagation

For layer k=1 to L Do,
a. W b ← Binarize(W)
b. Compute support vector sk,j ← ai,j(wb) + bi ,
i=1,..,r, s,w ∈ Rp×1

c. Compute zij=F(
∑m

k=1 xikSkj), i=1,...,d, j=1,...,n
end For

1.2 Backward Propagation
For layer k=L to 1 Do,
Compute gradients ∂C

∂ak , ∂C∂bk
and ∂C

∂Wk

end For
1.3 Updating the parameters

For layer k=1 to L, Do
a. wk+1 ← Update(W), b. ak+1 ← Update(a), c. bk+1 ← Update(b)

end For

We tested our algorithm with the benchmark MNIST handwritten data set using a 4-layer fully-
connected network. We initialized the support parameters aij , bij randomly to simulate bit-array
support-based BNN. Fig. 2(a) shows the learning curve of the four-layer network for varying block
sizes. Training loss for block size two is almost similar to the full precision network (as expected),
and loss increases with the increasing block size. Fig. 2(b) shows the accuracy results on MNIST
data set with support vector optimization on weights for random initialization and initialization with
a pre-trained network for different block sizes. Later we will discuss that lower precision of support
parameters is helpful in reducing power dissipation. Therefore, Fig. 2(c) depicts the impact of
quantization of the support parameters on the accuracy of the network. In Fig. 2(c), the inference
accuracy is tolerant up to four-bit precision in the parameters. In Fig. 2(d), zero-centered single mode
distribution of support parameters, especially ‘a,’ also allows support parameter-based sparsification
of BNN weight matrix. Here, if |aij | < ε than aij is approximated as zero. If aij is zero, the
corresponding weight matrix block need not be processed against input. Fig. 2(e) shows the accuracy
results for varying ε and different bit precision of ‘a.’ Note that up to 52% support parameters can be

3

IBIAS

IBIAS,2

BSEL,1 BSEL,2

MERG1

I1,0 I1,1 I1,2 I1,3

S2,0 S2,1 S2,2 S2,3

IDAC,1

IDAC,2

a1,0 a1,1 a1,2

(a)

SRAM cell

storing a1,0
SRAM cell

storing a1,n

C/S n1

WL

Vcell

BLL BLR

Qb
Q

BL1GND
n2

IN

SRAM cell storing

Wi,j

IREF

Circuit Producing

IBIAS

(a)

(b) (c)

(b)

Figure 3: (a) Digital to analog converter (DAC) with support parameter ai,j . (b) 8-T SRAM bitcell and current
mirror which supply the IBIAS .

dropped without a considerable loss in accuracy. A key benefit of support parameter-based pruning is
that it allows an easier implementation of dynamic energy-accuracy trade-off.

Fig. 1 shows the implementation of SRAM-BNN with bitcell array-based support parameters. The
architecture also comprises current steering digital-to-analog converter (DAC), successive approxima-
tion analog-to-digital converter (ADC), row decoder, column multiplexer, and activation function
processing unit in the peripherals. The input vector to a neuron layer I is stored at the DAC operand
buffer at the right in the figure. Input values are converted to the analog mode current IDAC using row
digital-to-analog converter (DAC) array. SRAM cells in the array are designed using eight transistors
and have an additional scalar product port [Fig. 3(b.b)]. SRAM cells operate as a current mode
AND gate. If an SRAM cell stores ‘1’, it allows row DAC current IDAC,j to flow through its bit line.
Otherwise, the current is blocked. Scalar product port of SRAM can be selected using column select
signal(C/S) in the figure. Total column current in column i, therefore, follows the scalar product of
I · wi, where wi is the binary weight vector stored in the column. The key features of the proposed
implementation are: (i) The SRAM array operates in a column-wise parallel mode, which enables a
high throughput processing. (ii) The 8-T SRAM decouples read/write operation with the computation
of scalar products. As a result, the scalar product does not interfere with the typical operation of cells.

Fig. 3 shows the DAC architecture with support parameters we use in the proposed design. We
revised the current steering DAC as shown in Fig. 3(a). ai,j are the support parameters stored in the
SRAM cell [Fig. 3(b.a)]. We chose SAR ADC for the digital conversion as it does not require large
capacitance for low precision. Complete digital nature of SAR ADCs enables low power overhead
and lower complexity. A nonlinear activation function is typically used in every layer of the fully
connected neural network. In our work, we used the Relu activation function. The Relu activation
function has become popular in recent years due to its simplicity. It also has the ability to enable fast
training.

3 Experimental Results and Discussions

We simulated the functional analysis in Pytorch and MATLAB and the experimental analysis in
HSPICE. We initialize the weights Wi,j , support parameters ai,j and bi,j randomly in Pytorch and
store them in SRAM array. We perform the computation of the scalar product of IDAC .W/a in
HSPICE. A 5-bit current steering DAC, which takes the binarized feature vector as input, produces
the current IDAC . We read the product data from HSPICE data in Pytorch to train the network for
100 epochs. After training, we perform the inference of the test data set in Pytorch. We wrote a
MATLAB script for HSPICE simulation. For current,power-performance, and process variation study,
the simulations use 45nm technology node. Fig. 4(a) shows the current analysis of an 8× 1 array.
Here we swept the input value from 0-255 as the pixel values of the MNIST data set varies from
0-255 for different weight combination. From the figure, it is evident that the experimental current
value matches the theoretical current value. Inclusion of support parameters reduces the current to∑
IDAC/a from

∑
IDAC , where a is the support parameter. Fig. 4(b) shows the current results with

5-bit support parameters.

4

(a)

0 10 20 30
5 bit weight combination

0

1

2

3

C
ur

re
nt

#10-7

I
actual

I
measured

(b)

8 7 6 5 4
Quantization bits

0.02

0.04

0.06

0.08

A
ve

ra
ge

 e
rr

or

ADC precision
DAC precision

(c)

0 50 100
no of monte carlo simulations)

0

5

10

cu
rr

en
t(

A
)

W = 255, V =255
W = 255, V =254

(d)

1 1.5 2 2.5 3 3.5 4
Process variability in transistors(%)

0.5

1

1.5

2

2.5

3

A
ve

ra
ge

 c
ur

re
nt

di

ff
er

en
ce

(
A

) array size 32 1
array size 8 8

(e)

Figure 4: (a) actual and experimental current difference for 8 × 1 block without introducing any support
parameters. (b) actual and experimental current for 32× 1 block with 5-bit support parameter. (c) accuracy of a
fully connected MLP for MNIST training data set with different bit precision of the DAC and ADC. Effect of
VTH variability in SRAM cell transistors to scalar product current. (d) Current for two different weight and
feature combination at 30 mV processes variation in Vth after 100 monte carlo simulation. (e) Scalar product(as
current) at different level of processes variation.

Previously, the Neural Network models were designed to maximize the accuracy without considering
complexity of implementation, which requires high energy cost. Reduction of the bit precision of the
operands and operation is one way to reduce the implementation complexity and power consumption,
which includes the conversion of floating-point to fixed-point, reducing the bitwidth, non-linear
quantization, and weight sharing. In our work, all the weights stored in SRAM are 1-bit, and we
varied bit precision of support parameter from 8-bit to 3-bit to analyze the accuracy results. We also
varied the bit precision of the DAC and ADC in our network. We varied both the precision from 8-bit
to 4-bit. Fig. 4(c) shows the average error value of the architecture for different bit precision of DAC
and ADC. We simulated the architecture in bank by bank. We choose different bank sizes to analyze
the power performance of our architecture. The architecture consumes power of 48.09 µW for bank
size 8× 8 and 156.04 µW for bank size 64× 64.

While keeping the cell design to the simplest in previous work, the scalar product is sensitive to the
threshold voltage (VTH) variability in SRAM cells. Meanwhile, in our proposed design, the SRAM
cells either act as a current buffer or block the input current so that the variability in cell transistors
has a minimal impact on the accuracy of a scalar product. Fig. 4(d-e) shows the effect of process
variation. We conducted 100 monte Carlo simulations with weight matrix W = 255 (32 bits), feature
matrix V = 255 and 254 for a process variation of 30 mV. From the figure, it is evident that our
architecture is robust to processes variation. We also simulated the architecture for various processes
variability (Fig. 4(e)).

4 Conclusion

In this paper, we introduce a bitcell array-based supported-BinaryNet, which achieves higher pre-
diction accuracy than the SRAM-based binarized neural network (SRAM-BNN) by enhancing the
training weight space of SRAM-BNN while requiring minimal overheads to a typical design. Com-
pared to a typical SRAM-BNN, our approach suffers from power and latency overheads. We propose
a dynamic drop out of a part of the support parameters to reduce the power overheads. Our proposed
architecture is able to tolerate lower precision of transistors and other component variabilities.

References

[1] D. Keitel-Schulz and N. Wehn, “Embedded dram development: Technology, physical design, and application
issues,”, May 2001.

[2] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N. Sun, and O. Temam, “Dadiannao:
A machine-learning supercomputer,” 2014.

[3] Jintao Zhang, Zhuo Wang, and N. Verma, “A machine-learning classifier implemented in a standard 6t sram
array,” in 2016 VLSI-Circuits, June 2016.

[4] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie, “Prime: A novel processing-in-memory
architecture for neural network computation in reram-based main memory,” Jun. 2016.

[5] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized neural networks,” , 2016.

[6] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” 2014.

5

	Introduction
	SRAM Bitcell Array-based Support Vectors
	Experimental Results and Discussions
	Conclusion

