
AutoSlim: Towards One-Shot Architecture Search for
Channel Numbers

Jiahui Yu Thomas Huang
University of Illinois at Urbana-Champaign

Abstract

We study how to set the number of channels in a neural network to achieve better
accuracy under constrained resources (FLOPs, latency, memory footprint or model
size). A simple and one-shot solution, named AutoSlim, is presented. Instead
of training many network samples and searching with reinforcement learning,
we train a single slimmable network to approximate the network accuracy of
different channel configurations. We then iteratively evaluate the trained slimmable
model and greedily slim the layer with minimal accuracy drop. By this single
pass, we can obtain the optimized channel configurations under different resource
constraints. We present experiments with MobileNet v1, MobileNet v2, ResNet-
50 and RL-searched MNasNet on ImageNet classification. Notably, by setting
optimized channel numbers, our AutoSlim-MobileNet-v2 at 305M FLOPs achieves
74.2% top-1 accuracy, 2.4% better than default MobileNet-v2 (301M FLOPs),
and even 0.2% better than RL-searched MNasNet (317M FLOPs). Our AutoSlim-
ResNet-50 at 570M FLOPs, without depthwise convolutions, achieves 1.3% better
accuracy than MobileNet-v1 (569M FLOPs). Code and models are available at:
https://github.com/JiahuiYu/slimmable_networks.

1 Introduction

The number of channels of a neural network plays a critical role in its affordability on resource
constrained platforms, such as mobile phones, wearables and Internet of Things (IoT) devices. The
most common constraints, i.e., latency, FLOPs and runtime memory footprint, are all bound to
the number of channels. For example, in a single convolution or fully-connected layer, the FLOPs
(number of Multiply-Adds) increases linearly by the output channels. The memory footprint can
also be reduced by reducing the number of channels in bottleneck convolutions for most vision
applications.

Despite its importance, the number of channels has been chosen mostly based on heuristics. In
this work, we present AutoSlim, a simple and one-shot architecture search method for the number
of channels. Our main idea lies in training a slimmable network [1] to approximate the network
accuracy of different channel configurations. Yu et al. [1, 2] introduced slimmable networks that
can run at arbitrary width with equally or even better performance than same architecture trained
individually. Although the original motivation is to provide instant and adaptive accuracy-efficiency
trade-offs, we find slimmable networks are especially suitable as benchmark performance estimators
for several reasons: (1) Training slimmable models is much faster than the brute-force approach. (2)
A trained slimmable model can execute at arbitrary width, which can be used to approximate relative
performance among different channel configurations. (3) The same trained slimmable model can be
applied on search of optimal channels for different resource constraints.

In AutoSlim, we first train a slimmable model for a few epochs (e.g., 10% to 20% of full training
epochs) to quickly get a benchmark performance estimator. We then iteratively evaluate the trained
slimmable model and greedily slim the layer with minimal accuracy drop on validation set (for

Preprint. Under review.

https://github.com/JiahuiYu/slimmable_networks


ImageNet, we randomly hold out 50K samples of training set as validation set). After this single
pass, we can obtain the optimized channel configurations under different resource constraints (e.g.,
network FLOPs limited to 150M, 300M and 600M). Finally we train these optimized architectures
individually or jointly (as a single slimmable network) for full training epochs. We experiment with
various networks including MobileNet v1, MobileNet v2, ResNet-50 and RL-searched MNasNet on
the challenging setting of 1000-class ImageNet classification. AutoSlim achieves better results (with
much lower search cost) compared with three baselines: (1) the default channel configuration of these
networks, (2) channel pruning methods on same network architectures [3, 4] and (3) reinforcement
learning based architecture search methods [5, 6].

2 Related Work

Channel Pruning. Channel pruning methods [7, 4] aim at reducing effective channels of a large
neural network to speedup its inference. Both training-based, inference-time and initialization-time
pruning methods have been proposed [7, 4] in the literature.

Neural Architecture Search (NAS). Recently there has been a growing interest in automating
the neural network architecture design. Significant improvements have been achieved by these
automatically searched architectures in many vision and language tasks. However, most neural
architecture search methods did not include channel configuration into search space, and instead
applied human-designed heuristics. More recently, the RL-based searching algorithms are also
applied to prune channels [5] or search for filter numbers [6] directly.

Slimmable Networks. Slimmable networks were firstly introduced in [1]. Yu et al. further introduced
universally slimmable networks, extending slimmable networks to execute at arbitrary width, and
generalizing to networks both with and without batch normalization layers. Meanwhile, two improved
training techniques, the sandwich rule and inplace distillation, were proposed [2] to enhance training
process and boost testing accuracy. Moreover, with the proposed methods, one can train nonuniform
universally slimmable networks, where the width ratio is not uniformly applied to all layers. In
other words, each layer in a nonuniform universally slimmable network can adjust its number of
channels independently during inference. While the original motivation [1, 2] of slimmable networks
is to provide instant and adaptive accuracy-efficiency trade-offs at runtime for different devices, we
present an approach that uses slimmable networks for searching channel configurations of deep neural
networks.

3 AutoSlim: Network Slimming by Slimmable Networks

Figure 1: The flow diagram of our proposed approach AutoSlim.

The goal of channel configuration search is to optimize the number of channels in each layer, such
that the network architecture with optimized channel configuration can achieve better accuracy under
constrained resources. The constraints can be FLOPs, latency, memory footprint or model size. Our
approach is conceptually simple, and it has two essential steps:

(1) Given a network architecture, we first train a slimmable model for a few epochs (e.g., 10% to
20% of full training epochs). During the training, many different sub-networks with diverse channel
configurations have been sampled and trained. Thus, after training one can directly sample its

2



Table 1: ImageNet classification results with various network architectures. Blue indicates the
network pruning methods [8, 4, 5, 9], Cyan indicates the network architecture search methods [6]
and Red indicates our results using AutoSlim.

Group Model Parameters Memory CPU Latency FLOPs Top-1 Err. (gain)

200M FLOPs

ShuffleNet v1 1.0× [10] 1.8M 4.9M 46ms 138M 32.6
ShuffleNet v2 1.0× [11] - - - 146M 30.6
MobileNet v1 0.5× [12] 1.3M 3.8M 33ms 150M 36.7
MobileNet v2 0.75× [13] 2.6M 8.5M 71ms 209M 30.2

AMC-MobileNet v2 [5] 2.3M 7.3M 68ms 211M 29.2 (1.0)

MNasNet 0.75× [6] 3.1M 7.9M 65ms 216M 28.5

AutoSlim-MobileNet v1 1.9M 4.2M 33ms 150M 32.1 (4.6)
AutoSlim-MobileNet v2 4.1M 9.1M 70ms 207M 27.0 (3.2)
AutoSlim-MNasNet 4.0M 7.5M 62ms 217M 26.8 (1.7)

300M FLOPs

ShuffleNet v1 1.5× [10] 3.4M 8.0M 60ms 292M 28.5
ShuffleNet v2 1.5× [11] - - - 299M 27.4
MobileNet v1 0.75× [12] 2.6M 6.4M 48ms 325M 31.6
MobileNet v2 1.0× [13] 3.5M 10.2M 81ms 300M 28.2

NetAdapt-MobileNet v1 [9] - - - 285M 29.9 (1.7)
AMC-MobileNet v1 [5] 1.8M 5.6M 46ms 285M 29.5 (2.1)

MNasNet 1.0× [6] 4.3M 9.8M 76ms 317M 26.0

AutoSlim-MobileNet v1 4.0M 6.8M 43ms 325M 28.5 (3.1)
AutoSlim-MobileNet v2 5.7M 10.9M 77ms 305M 25.8 (2.4)
AutoSlim-MNasNet 6.0M 10.3M 71ms 315M 25.4 (0.6)

500M FLOPs

ShuffleNet v1 2.0× [10] 5.4M 11.6M 92ms 524M 26.3
ShuffleNet v2 2.0× [11] - - - 591M 25.1
MobileNet v1 1.0× [12] 4.2M 9.3M 64ms 569M 29.1
MobileNet v2 1.3× [13] 5.3M 14.3M 106ms 509M 25.6

MNasNet 1.3× [6] 6.8M 14.2M 95ms 535M 24.5

AutoSlim-MobileNet v1 4.6M 9.5M 66ms 572M 27.0 (2.1)
AutoSlim-MobileNet v2 6.5M 14.8M 103ms 505M 24.6 (1.0)
AutoSlim-MNasNet 8.3M 14.2M 95ms 532M 24.5

Heavy Models

ResNet-50 [14] 25.5M 36.6M 197ms 4.1G 23.9
ResNet-50 0.75× [14, 1] 14.7M 23.1M 133ms 2.3G 25.1
ResNet-50 0.5× [14, 1] 6.8M 12.5M 81ms 1.1G 27.9
ResNet-50 0.25× [14, 1] 1.9M 4.8M 44ms 278M 35.0

He-ResNet-50 [4, 8] - - - ≈2.0G 27.2

AutoSlim-ResNet-50

23.1M 32.3M 165ms 3.0G 24.0
20.6M 27.6M 133ms 2.0G 24.4
13.3M 18.2M 91ms 1.0G 26.0
7.4M 11.5M 69ms 570M 27.8

sub-network architectures for instant inference, using the correspondent computational graph and
same trained weights.

(2) Next, we iteratively evaluate the trained slimmable model on the validation set. In each iteration,
we decide which layer to slim by comparing their feed-forward evaluation accuracy on validation set.
We greedily slim the layer with minimal accuracy drop, until reaching the efficiency constraints. No
training is required in this step.

The flow diagram of our approach is shown in Figure 1. Our approach is also flexible for different
resource constraints, since the FLOPs, latency, memory footprint and model size are all deterministic
given a channel configuration and a runtime environment. By a single pass of greedy slimming in step
(2), we can obtain the (FLOPs, latency, memory footprint, model size, accuracy) tuples of different
channel configurations. It is noteworthy that the latency and accuracy are relative values, since the
latency may be different across different hardware and the accuracy can be improved by training the
network for full epochs. In the setting of optimizing channel numbers, we benefit from these relative
values as performance estimators.

The Search Space. The executable sub-networks in a slimmable model compose the search space of
channel configurations given a network architecture. To train a slimmable model, we simply apply
two width multipliers [2] as the upper bound and lower bound of channel numbers. For example, for

3



all mobile networks, we train a slimmable model that can execute between 0.15× and 1.5×. In each
training iteration, we randomly and independently sample the number of channels in each layer.

Greedy Slimming After training a slimmable model, we evaluate it on the validation set (on ImageNet
we randomly hold out 50K images in training set as validation set). We start with the largest model
(e.g., 1.5×) and compare the network accuracy among the architectures where each layer is slimmed
by one channel group. We then greedily slim the layer with minimal accuracy drop. During the
iterative slimming, we obtain optimized channel configurations under different resource constraints.
We stop until reaching the strictest constraint (e.g., 50M FLOPs or 30ms CPU latency).

4 Experiments

Table 1 summarizes our results on ImageNet classification with various network architectures in-
cluding MobileNet v1 [12], MobileNet v2 [13], MNasNet [6], and one large model ResNet-50 [14].
As shown in Table 1, our models have better top-1 accuracy compared with the default channel
configuration of MobileNet v1, MobileNet v2 and ResNet-50 across different computational budgets.
We even have improvements over RL-searched MNasNet [6], where the filter numbers are already
included in its search space.

References
[1] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable neural networks. arXiv

preprint arXiv:1812.08928, 2018.

[2] Jiahui Yu and Thomas Huang. Universally slimmable networks and improved training techniques. arXiv
preprint arXiv:1903.05134, 2019.

[3] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural network
compression. arXiv preprint arXiv:1707.06342, 2017.

[4] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks. In
Computer Vision (ICCV), 2017 IEEE International Conference on, pages 1398–1406. IEEE, 2017.

[5] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model compression
and acceleration on mobile devices. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 784–800, 2018.

[6] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, and Quoc V Le. Mnasnet: Platform-aware
neural architecture search for mobile. arXiv preprint arXiv:1807.11626, 2018.

[7] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learning
efficient convolutional networks through network slimming. In Computer Vision (ICCV), 2017 IEEE
International Conference on, pages 2755–2763. IEEE, 2017.

[8] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of network
pruning. arXiv preprint arXiv:1810.05270, 2018.

[9] Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec Go, Mark Sandler, Vivienne Sze, and Hartwig
Adam. Netadapt: Platform-aware neural network adaptation for mobile applications. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 285–300, 2018.

[10] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient convolutional
neural network for mobile devices. arXiv preprint arXiv:1707.01083, 2017.

[11] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In Proceedings of the European Conference on Computer Vision (ECCV),
pages 116–131, 2018.

[12] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

[13] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Inverted
residuals and linear bottlenecks: Mobile networks for classification, detection and segmentation. arXiv
preprint arXiv:1801.04381, 2018.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

4


	Introduction
	Related Work
	AutoSlim: Network Slimming by Slimmable Networks
	Experiments

