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Abstract

We consider the problem of performing Spoken Language Understanding (SLU)
on small devices typical of IoT applications. Our contribution is two-fold. First,
we outline the design of an embedded, private-by-design SLU system and show
that it has performance on-par with cloud-based commercial solutions. Second, we
release the datasets used in our experiments in the interest of reproducibility and in
the hope that they can prove useful to the community.

1 Introduction

Spoken Language Understanding (SLU) is the task of extracting meaning from a spoken utterance.
Over the last years, thanks in part to steady improvements brought by deep learning approaches to
Automatic Speech Recognition (ASR) [18], voice interfaces implementing SLU have greatly evolved
from spotting limited and predetermined keywords to understanding arbitrary formulations of a
given intention, and are becoming ubiquitous in connected devices. Most current solutions however
offload their processing to the cloud, where computationally demanding engines can be deployed.
As an example, the ASR engine achieving human parity in [18] is a combination of several neural
networks, each containing several hundreds of millions of parameters, and large-vocabulary language
models made of several millions of n-grams. The size of these models, along with the computational
resources necessary to run them in real-time, make them unfit for deployment on small devices.
Running SLU on the edge (i.e. embedding the engine directly on the device without resorting to the
cloud, used interchangeably with on the device) however offers several advantages. First, on-device
processing removes the need to send speech, or other personal data to third-party servers, therefore
guaranteeing a high level of privacy. In particular, we show in Section 3.1 how an embedded SLU
model can be personalized on device using user data. Additional benefits include a reduction in
latency and offline capabilities [14]. In this paper, we describe the Snips Voice Platform, a SLU
system that runs directly on device, therefore offering all the advantages of edge computing, and has
performance on-par with commercial, cloud-based solutions.

1.1 Outline and main results

A typical SLU system has three main components. First, an Acoustic Model (AM) maps a spoken
utterance to a sequence of probabilities over phones (units of speech). Second, a Language Model
(LM) maps the output of the AM to a likely text sentence. These first two components constitue the
ASR system. Third, a Natural Language Understanding (NLU) engine extracts from the sentence the
intent of the user (e.g. querying the weather forecast) and the slots qualifying her query (e.g. a city in
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the case of a weather forecast query). Our main contribution is to outline the design of an embedded
SLU system that achieves performances on-par with cloud-based solutions, and is efficient enough
to run in real time on IoT devices as small as the Raspberry Pi 3, with 1GB of RAM and 1.4GHz
CPU. This is achieved by optimizing a trade-off between accuracy and computational efficiency when
designing the AM, and by contextualizing the LM and NLU components in order both to reduce
their size and increase their in-domain accuracy. While the AM is trained once per language, the
subsequent SLU components are use-case dependent. We have also released publicly1 the datasets
used for the experiments of Section 5 in the hope that they can be useful to the research community.
The NLU component of the Snips Voice Platform is open source2. Our SLU models can be trained
through a web console, at no cost for non-commercial use.

1.2 Relation to previous work

Recent interest in mobile speech recognition has lead to new work on ASR model compression [8].
In this work, personal data is incorporated dynamically in the language model using a class-based
model similar to the one we introduce in the following. The authors however do not study the
performance of their system in terms of SLU performance but rather on a large-vocabulary speech
recognition task. We rather introduce contextualized models assessed through end-to-end SLU
metrics, which are arguably a better proxy for user experience [16]. Another line of work is interested
in embedded speech commands, leveraging small models that can understand a small range of
predefined commands, usually limited to one or two words [17]. These approaches however cannot
handle the variety of natural language interactions addressed in the following.

2 Acoustic modeling

Our AM is designed so as to optimize a trade-off between accuracy and computational efficiency.
We use training datasets consisting of a few thousand hours from many different speakers of audio
data with corresponding transcripts. Noisy, far-field conditions with reverberation are simulated by
augmenting the data with thousands of virtual rooms with random microphone and speaker locations.
We train deep neural AMs using the Kaldi toolkit [12]. Our typical architectures have 7 layers (and
one output layer), predict ∼ 1600 biphone senones, and are trained with the lattice-free Maximum
Mutual Information criterion [13], using natural gradient descent with a learning rate of 0.0005. The
computational requirements of an AM depends on the size of each layer (see Table 1). The AM is
chosen to offer near state-of-the-art performance, while running in real time with acceptable memory
requirements dependent on the target hardware. In Table 2, we assess the accuracy of the various
architectures on a standard large-vocabulary speech recognition task with the LibriSpeech dataset
[11] using the accompanying LM (refered to as tegmed in Kaldi). In the following, we consider
the nn256 model which is close to nn512 in accuracy while being six times smaller, and runs in
real time on a Raspberry Pi 3. We show in the following how to compensate this loss in accuracy
by contextualizing the subsequent components of the SLU pipeline to a certain domain, e.g. by
restricting the vocabulary and the variety of the queries that should be modeled.

3 Language modeling

The mapping from the output of the acoustic model to likely word sequences is done via a Viterbi
search in a weighted Finite State Transducer (wFST) [10], called ASR decoding graph in the following.
Formally, the decoding graph may be written as the composition of four wFSTs,

H ∗ C ∗ L ∗G , (1)
where ∗ denotes transducer composition, H represents Hidden Markov Models (HMMs) modeling
context-dependent phones, C represents the context-dependency, L is the lexicon and G is the LM,
typically a bigram or a trigram model represented as a wFST. The compositions are carried out
right to left, with determinization and minimization operations [10] applied at each step to optimize
decoding. We refer the interested reader to [10, 12] and references therein for background on wFSTs
and their use in speech recognition. In the following, we focus on the construction of the G transducer,
encoding the LM, from a domain-specific dataset.

1https://research.snips.ai/datasets/spoken-language-understanding
2https://github.com/snipsco/snips-nlu
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Layer Type nn256 nn512 nn768
TDNN(−2,−1, 0, 1, 2) 256 512 768
2 × TDNN(−1, 0, 1) 256 512 768
LSTMP(rec: -3) 256, p128 512, p256 768, p256
2 × TDNN(−3, 0, 3) 256 512 768
LSTMP(rec: -3) 256, p128 512, p256 768, p256
Num. params 2.6M 8.7M 15.4M

Table 1: Network architecture with corresponding layer sizes. TDNN refers to a Time-Delay layer
with ReLU activation. LSTMP means Long Short-Term Memory with Projection layer. A projection
layer size of N is denoted pN . The context, i.e. the number of relative frames seen by the layer at
time t, is shown in parentheses: the recurrent connections skip 3 frames in LSTMP layers, and the
TDNN layers consider inputs from various time steps.

Model dev-clean dev-other test-clean test-other
nn256 7.3 19.2 7.6 19.6
nn512 6.4 17.1 6.6 17.6
nn768 6.4 16.8 6.6 17.5

KALDI 3.9 10.2 4.2 10.6
Table 2: Word error rates (%) achieved with neural networks of different sizes on the splits of the
LibriSpeech dataset [11]. KALDI denotes the performance of the reference Kaldi recipe.

3.1 Language model adaptation

Our LM is adapted to understand arbitrary formulations of a finite set of intents described in a dataset.
Generalization to unseen queries is enabled by using both a statistical n-gram LM [6] which allows to
mix parts of the training queries to create new ones, and class-based language modeling [3] to swap
slot values. More precisely, we start by building patterns abstracting the queries of the dataset by
replacing all occurrences of each slot by a symbol. For example, the query “Play some music by (The
Rolling Stones)[artist]” is abstracted to “Play some music by ARTIST”. An n-gram model is then
trained on the resulting set of patterns, converted to a wFST called Gp [10]. Next, for each slot si
where i ∈ [1, n] and n is the number of slots, an acceptor Gsi is defined to encode the values the slot
can take. Gsi can either encode an n-gram model trained on a gazetteer (i.e. a list of possible values),
or a generative grammar exhaustively describing the construction of any slot value (e.g. for numbers
or dates). Denoting wFST replacement as “Replace”, we have [5]

G = Replace(Gp, {Gsi ,∀i ∈ [1, n]}) , (2)

The resulting SLU system is contextualized, and supported on a domain-specific vocabulary. As a
result, while a sufficient amount of specific training data may guarantee sampling the important words
which allow to discriminate between different intents, it will in general prove unable to correctly
sample filler words from general spoken language. In order to fix this and detect out of vocabulary
words (OOV), we use an approach based on so-called confusion networks [19] to represent decoded
words along with their posterior probability. We finally tag decoded words as unknown if their
posterior probability is lower than some threshold.

3.2 Dynamic language model

On small devices, computing the decoding graph (1) can result in a prohibitively large wFST for
larger assistants. For this reason, we build a dynamic language model by precomputing HCL and G,
and composing them lazily [2]. The states and transitions of the decoding graph are thus computed on
demand during inference, notably speeding up the building of the LM. Additionally, employing lazy
composition allows to break the decoding graph into two pieces, with sizes typically much smaller
than the equivalent, statically-composed HCLG. When using a dynamic LM, a better composition
algorithm must be used in order to keep the decoding fast enough. We use composition filters [2] such
as look-ahead filters followed by label reachability filters with weights and labels pushing, allowing
to discard inaccessible and costly decoding hypotheses early in the decoding. Crucially, we ensure
that the lexicon verifies the so-called C1P property (i.e. each symbol has a unique pronunciation [1])
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by associating a unique symbol for each pair (word, pronunciation). Finally, the Replace operation
of Equation (2) is performed upon loading the model from disk. This allows to further break the
decoding graph into smaller distinct pieces: the HCL transducer mapping the output of the acoustic
model to words, the query language model Gp, and the slots’ language models {Gsi ,∀i ∈ [1, n]}.
Breaking down the LM into smaller, separate parts makes it possible to efficiently update it. In
particular, performing on-device injection of new values in the LM becomes straightforward, enabling
users to customize their embedded SLU engine. For instance, if we consider an assistant dedicated
to making phone calls (“call (Jane Doe)[contact]”), the user’s list of contacts could be added to the
values of the slot “contact” without this sensitive data ever leaving the device. To do so, the new
words and their pronunciations are first added to the HCL transducer, using an embedded Grapheme
to Phoneme engine (G2P) to compute the missing pronunciations. The new slot values are then added
to the corresponding slot wFST Gsi by updating the counts of the n-grams. The time required for
the complete slot value injection procedure ranges from a few seconds for small assistants, to a few
dozen seconds for larger assistants supporting a vocabulary comprising tens of thousands of words.

4 Natural language understanding

The NLU component performs intent classification followed by slot filling. The former is implemented
with a logistic regression trained on the queries from every intent. The latter consists in several
linear-chain Conditional Random Fields (CRFs) [7], each of them trained for a specific intent. While
CRFs are a standard approach for slot filling [15], we note that more computationally demanding
approaches based on deep learning models have been recently proposed [9]. Our experiments
showed that these approaches do not yield any significant gain in accuracy in the typical training size
regime of custom voice assistants (a few hundred queries). Data sparsity is addressed by integrating
features based on precomputed word clusters, obtained by clustering word embeddings computed
on a large independent corpus, effectively reducing the vocabulary size from typically 50K words
to a few hundred clusters. Finally, gazetteer features are used, based on parsers built from the slot
values provided in the training data. Consistently with the n-gram slot models Gsi in the LM (see
Section 3.1), these parsers can match partial slot values. When injecting personal user data (see
Section 3.1), these gazetteer parsers are augmented accordingly to cover the new slot values. This
NLU component is open source and has been benchmarked and proven to be competitive against
various commercial solutions [4].

5 Numerical Results

In this section, we present an end-to-end evaluation of both our SLU system and a cloud-based
commercial solution, on two domains of increasing complexity posing different challenges. In the
interest of reproducibility, the datasets used in the following are publicly available (see Section 1.1).
The trained SLU models can be obtained through the Snips web console at no cost for non-commercial
use. In our comparison with Google’s cloud services, we used the service’s built-in slots and features
whenever possible in the interest of fairness. For all experiments, we fix our threshold for OOV
detection to 0.2, the pattern transducer Gp is a bigram model, while the Gsi corresponding to the
gazetteer-based slots are trigrams (see Section 3.1 for definitions of these quantities).

Experimental setting. Our datasets contain up to a few thousand text queries with their supervision,
i.e. intent and slots, collected using an in-house data generation pipeline described in [4]. We then
crowdsource the recording of these sentences and collect one spoken utterance for each text query
in the dataset. Far-field datasets are created by playing these utterances with a neutral speaker and
record them using a microphone array positioned at a distance of 2 meters. The aim of a SLU system
is then, given one such spoken utterance, to predict the ground-true intent (intent classification) and
slots. We measure the performance of both our SLU system and Google’s cloud services in terms of
F1-score on intent classification, and percentage of perfectly parsed utterances, such that both intent
and slots are recovered.

Small assistant. We first consider a small assistant typical of smart home use cases, the “SmartLights”
assistant, comprising 6 intents allowing to turn on or off the light, or change its brightness or color. It
has a vocabulary size of approximately 400 words, and depends on three slots (room, brightness and
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Close field Far field

Quantity Snips Google Snips Google

Intent classification (F1, %) 91.72 89.23 83.56 86.25
Perfect parsing (%) 84.22 79.27 71.67 73.43

Table 3: ‘SmartLights” assistant: end-to-end generalization performance compared with Google’s
Dialogflow cloud service on a 5-fold cross-validation experiment, in terms of F1-score in intent
classification and percentage of perfectly parsed utterances (both intent and slots are recovered).

Close field Far field

Language Provider Tier 1 Tier 2 Tier 3 Average Tier 1 Tier 2 Tier 3 Average

English Snips 71.27 67.73 67.21 68.73 42.08 39.36 35.58 39.01
Google 68.78 37.90 36.74 47.81 58.82 28.85 27.21 38.29

French Snips 78.20 74.14 73.06 75.13 57.49 53.56 53.89 54.98
Google 61.04 33.51 32.38 42.31 36.24 15.83 13.47 21.85

Table 4: Music assistants: percentage of perfectly parsed utterances of the form “I want to listen to
#ARTIST”. The tiers are created using a ranking of 10k artists according to their stream counts on
Spotify: Tier 1 corresponds to artists with rank between 1 and 1,000, tier 2 have ranking between
4,500 and 5,500 and tier 3 between 9,000 and 10,000. The Snips SLU system is trained on a complete
music assistant handling several interactions with a smart speaker (see text). The results labeled
“Google” correspond to replacing the Snips ASR component by Google’s Speech Recognition API.

color). Table 3 shows that we reach an accuracy similar to a commercial, cloud-based solution. Our
SLU system for this assistant has a total size of 15.1MB and runs in real time on a Raspberry Pi 3.

Large assistant. We then turn to a large and complex assistant allowing to control a smart speaker
through playback control (volume control, track navigation, etc), but also play music from large
libraries of artists, tracks, and albums. In addition to the English version of the assistant, we also
consider a French version which presents the additional difficulty of handling the pronunciations
of many English words in French. We compute cross-language pronunciations for these words
using a statistical English G2P, and then mapping their phonemes to the closest ones in the French
phonology. The vocabulary of the resulting English music assistant contains more than 65k words,
corresponding to 178k pronunciations, while the French assistant has more than 70k words, with
390k pronunciations. These assistants are the largest we consider, with a total size on disk of 80MB
for the English version, and 112MB for the French version. They run in real time on a Raspberry Pi 3.
We test these assistants on utterances of the form “play some music by #ARTIST”, where we sample
“#ARTIST” from a publicly available list of the most streamed artists on Spotify (released together
with the dataset). This experiment is representative of the difficulty of the SLU task, and additionally
allows to estimate the performance of ASR systems as a function of the popularity of artists. To
this end, we consider two sets of experiments. In the first, we perform inference using a full Snips
SLU engine and compute the fraction of correctly parsed utterances. In a second experiment, we
replace Snips ASR by Google’s Speech Recognition API. We find (see Table 4) that the performance
of cloud-based, general-purpose solutions such as Google’s ASR decay rapidly with the ranking of
the artist. By contrast, our class-based approach outlined in Section 3.1 assigns similar weights to all
artists, resulting in more robust performance even for less popular artists. Additionally, in practice,
our SLU system can incorporate user-specific tastes through value injection (see Section 3.2), e.g. by
connecting privately to a user’s favorite streaming service.

6 Conclusion

SLU on the edge can achieve the accuracy of cloud-based solutions without compromising on user
privacy while running in real time on small IoT devices. This is mainly done by optimizing a trade-off
between accuracy and computational efficiency when designing the AM and by contextualizing
the LM and NLU components. Future work includes further optimization to run our models on
microcontrollers and leveraging local speaker identification to improve the decoding accuracy.

5



References
[1] Cyril Allauzen, Michael Riley, and Johan Schalkwyk. A generalized composition algorithm for weighted

finite-state transducers. In Tenth Annual Conference of the International Speech Communication Associa-
tion, 2009.

[2] Cyril Allauzen, Michael Riley, and Johan Schalkwyk. Filters for efficient composition of weighted finite-
state transducers. In International Conference on Implementation and Application of Automata, pages
28–38. Springer, 2010.

[3] Peter F Brown, Peter V Desouza, Robert L Mercer, Vincent J Della Pietra, and Jenifer C Lai. Class-based
n-gram models of natural language. Computational linguistics, 18(4):467–479, 1992.

[4] Alice Coucke, Alaa Saade, Adrien Ball, Théodore Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Caltagirone, Thibaut Lavril, et al. Snips voice platform: an
embedded spoken language understanding system for private-by-design voice interfaces. arXiv preprint
arXiv:1805.10190, 2018.

[5] Axel Horndasch, Caroline Kaufhold, and Elmar Nöth. How to add word classes to the kaldi speech
recognition toolkit. In International Conference on Text, Speech, and Dialogue, pages 486–494. Springer,
2016.

[6] Slava Katz. Estimation of probabilities from sparse data for the language model component of a speech
recognizer. IEEE transactions on acoustics, speech, and signal processing, 35(3):400–401, 1987.

[7] John Lafferty, Andrew McCallum, and Fernando CN Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. 2001.

[8] Ian McGraw, Rohit Prabhavalkar, Raziel Alvarez, Montse Gonzalez Arenas, Kanishka Rao, David Rybach,
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