
Neural Networks Weights Quantization: Target
None-retraining Ternary (TNT)

Tianyu Zhang ∗
WeBank

Shenzhen, Guangdong, China
brutuszhang@webank.com

Lei Zhu ∗
Harbin Engineering University
Harbin, Heilongjiang, China
zhulei@hrbeu.edu.cn

Qian Zhao
University of Hyogo
Kobe, Hyogo, Japan

zhaoqian_sunny@yahoo.co.jp

Kilho Shin
Gakushuin University

Tokyo, Japan
yoshihiro.shin@gakushuin.ac.jp

Abstract

Quantization of weights of deep neural networks (DNN) has proven to be an
effective solution for the purpose of implementing DNNs on edge devices such as
mobiles, ASICs and FPGAs, because they have no sufficient resources to support
computation involving millions of high precision weights and multiply-accumulate
operations. This paper proposes a novel method to compress vectors of high
precision weights of DNNs to ternary vectors, namely a cosine similarity based
target non-retraining ternary (TNT) compression method. Our method leverages
cosine similarity instead of Euclidean distances as commonly used in the literature
and succeeds in reducing the size of the search space to find optimal ternary vectors
from 3N to N , where N is the dimension of target vectors. As a result, the
computational complexity for TNT to find theoretically optimal ternary vectors
is only O(N log(N)). Moreover, our experiments show that, when we ternarize
models of DNN with high precision parameters, the obtained quantized models
can exhibit sufficiently high accuracy so that re-training models is not necessary.

1 Introduction

Quantizing deep neural networks (DNNs) can reduce memory requirements and energy consumption
when deploying inferences on edge devices, such as mobiles, ASICs and FPGAs. Comparing with
networks quantized by other methods, the binary and ternary networks use only 1 or 2 bits to represent
DNNs’ weights, and therefore, can further improve the performance of inferences of DNN on edge
devices because they not only remove multiplication operations but use less memory as well. As a
result, many researches focus on binary and ternary quantifications.

BinaryConnect[1] proposed a sign function to binarize the weights. Binary Weight Network (BWN)
[2] introduced the same binarization function but added an extra scaling factor to obtain better results.
BinaryNet [3] and XNOR-Net [2] extended the previous works so that both weights and activations
were binarized. Instead of binarization, ternarization, which inherently prunes weights close to
zero by setting them to zero during training to make networks sparser, is further studied. TWN [4]
quantized full precision weights to ternary weights so that the Euclidean distance (Second Normal
Form) between the full precision weights and the resulting ternary weights along with a scaling factor

∗Zhang and Zhu are the co-first authors, and Zhang is the corresponding author in this work. EMC2: 5th
Edition Co-located with NIPS’19

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

is minimized. GXNOR-Net [5] provided a unified discretization framework for both weights and
activations. Alemdar et al. [6] trained ternary neural networks using a teacher-student approach based
on a layer-wise greedy method. Mellempudi et al. [7] proposed a fine-grained quantization (FGQ) to
ternarize pre-trained full precision models, while also constraining activations to 8 and 4 bits.

The parts in inference computation that consume time and energy in the largest scale involve many
weights in computation, which are saved as tensors in every layer. A tensor can be decomposed
to a set of vectors, referred to as target vectors, and each target vector is approximated to a binary
or ternary vector. To control the approximation error, Euclidean distance is the most commonly
utilized in many previous works in: these quantization methods measure the approximation error or
similarity between original target vectors and the approximated ternary or binary vectors as Euclidean
distances. This method, however, is known to require expensive computation. For example, the time
complexity of the tenary method proposed in [7] was O(N3). In this paper, we propose a novel tenary
method whose time complexity is improved toO(N logN) by replacing Euclidean distance by cosine
similarity. We call our method a cosine similarity based target non-retraining ternary (TNT) method.
In addition, our method has following advantages: 1) TNT is a non-retraining optimal quantization
method for ternarization, binarization, and low bit-width quantizations; 2) We find the theoretical
upper limit of similarity between target vectors and ternary vectors; it is guaranteed that TNT always
finds the optimal ternary vectors with the maximum similarity of original vectors; 3) We find the
similarity is influenced by distributions of component values of target vectors, and furthermore,
higher similarity can be obtained if we assume uniform distributions than normal distributions.

2 Method Description

The proposed TNT first divides the tensor type weights of a DNN model into plural target vectors.
Then, it finds the ternary vector most similar to every target vector with respect to cosine similarity.
In other words, the ternary vector is selected so that the intersection angle between the target vector
and ternary vector is minimized. Finally, it uses a scalar-tuning technique to adjust the error between
one target vector and its ternary vector to obtain an optimal converting result.

2.1 Tensor Decomposition and Vectorization

The weights of a DNN are normally stored in a fourth-order tensor shape, such as N × C ×W ×H ,
that contains N third-order tensors and every third-order tensor has C channels, W width, and H
height. The purpose of tensor vectorization is to flatten every third-order tensor into a set of target
vectors. We expect that decomposing a tensor along the channel direction can yield good results,
because each channel is an integral unit which acts as a feature extractor for convolution calculations
with a feature map. Hence, a third-order tensor can be vectorized toW(1),W(2), · · · ,W(C). This
expectation will be verified through experiments in this paper.

2.2 Target Non-retrain Ternarization

We first introduce our cosine similarity based technique TNT, which reduces the searching range to
N . Then, a scalar-tuning method is proposed to further optimize the ternary vector. The total of the
computational complexity is O(N logN).

2.2.1 Cosine Similarity

Given a target vector of a layer j of a CNN, which is denoted by w(j) = (w
(j)
1 , · · · , w(j)

N) for
w

(j)
i ∈ R, the purpose is to find a ternary vector t(j) = (t

(j)
1 , · · · , t(j)n), t

(j)
i ∈ {−1, 0, 1} that

approximates w(j). For simple representation of equations, we eliminate the notation of j since it
only represents a layer j. In TNT, we use the cosine similarity metric between the two vectors to find
the optimal ternary vector t. The cosine similarity between the target vector w and the ternary vector
t can be written as Eq.(1), where ŵ = w

‖w‖2 and α ∈ [0, π) is the intersecting angle between w and
t. The value of cosα is controlled by vector t since every element wi in the target vector w is fixed.

argmin
t

α = argmax
t

w · t
‖w‖2‖t‖2

= argmax
t

ŵ · t
‖t‖2

(1)

2

When we denote ŵ = (a1, a2, · · · , aN), Eq. (1) can be transformed to Eq. (2), where ti ∈ {−1, 0, 1}
and the search range of t is {−1, 0, 1}N .

argmax
t

ŵ · t
‖t‖2

= argmax
ti

∑N
i=1 aiti√∑N
i=1(ti)

2

(2)

Let (b1, . . . , bN) be the propagation obtained by sorting (|a1|, . . . , |aN |) in a decreasing order.
Without loss of generality, we can assume that all ai are non-zero. First, we solve Eq. (2) under the
constraint of

∑N
i=1 |ti| =M . Evidently,∑N

i=1 aiti√
M

≤
∑M

j=1 bj√
M

. (3)

holds, and the equality holds, if ti = 0 for ai that corresponds to bj for j ∈ {M + 1, . . . , N} and
ti =

ai

|ai| for the others. Therefore, what we need to know is

argmax

{∑M
i=1 bi√
M

∣∣∣M = 1, . . . , N

}
,

and hence, calculating argument t in Eq.1 equals to find the maximum value among N candidates
instead of among 3N candidates. Moreover, the computational cost of finding t simply equals to the
time complexity of sorting (|a1|, |a2|, · · · , |aN |) to (b1, b2, · · · , bM), which is O(N logN).

2.2.2 Scalar-Tuning

Thus, we can obtain t whose intersecting angle with w is minimized. In other words, t approximately
determines the direction of w. To describe w, we need to determine the length λ in the direction of t.
The principle is to find an optimal λ > 0 that minimizes the error

∥∥∥w − λ t
‖t‖2

∥∥∥
2
. It is well known

that the error is minimum, if, and only if, λ t
‖t‖2 is the orthographic projection of w to t (Fig. 1),

which is given by

λ
t

‖t‖2
=

w · t
t · t

t.
"#$%

)

*
(

+,
+

-*

Figure 1: Scalar Constant λ of a Ternary Vector

This increases the necessary memory size (footprint), but is effective to improve accuracy. Moreover,
if t includes both positive and negative elements, we could improve the accuracy more by memorizing
one more scalar: We let t = tp − tn with tp ≥ 0 and tn ≤ 0 and w = wp −wn with wp ≥ 0 and
wn ≤ 0: for a vector v, v ≥ 0 (v ≤ 0) means that all the elements of v is non-negative (non-positive).
We should note that tp · tn = tp ·wn = wp · tn = wp ·wn = 0, tp ·wp ≥ 0 and tn ·wn ≥ 0 holds.
Therefore, we have:

∥∥∥∥w − w · t
t · t

t

∥∥∥∥2
2

= w ·w − (w · t)2

t · t

= wp ·wp +wn ·wn −
(wp · tp +wn · tn)2

tp · tp + tn · tn

≥ wp ·wp −
(wp · tp)2

tp · tp
+wn ·wn −

(wn · tn)2

tn · tn

=

∥∥∥∥wp −
wp · tp
tp · tp

tp

∥∥∥∥2
2

+

∥∥∥∥wn −
wn · tn
tn · tn

tn

∥∥∥∥2
2

.

3

Thus, if we let λp =
wp·tp
‖tp‖ and λn = wn·tn

‖tn‖ memorized in addition to t, we can not only save
memory size but also suppress loss of accuracy.

3 Simulations

In this part, we first show the performance of our TNT method on transforming target vectors to
ternary vectors. Then, we show the upper limit of similarity of ternary and binary when utilizing
different distributions to initialize target vectors. Finally, we demonstrate an example using TNT to
convert weights of DNN models to ternary. All experiments are run on a PC with Intel(R) Core(TM)
i7-8700 CPU at 3.2GHz using 32GB of RAM and a NVIDIA GeForce GTX 1080 graphics card,
running Windows 10 system.

3.1 Converting Performance

In order to investigate the accuracy performance of our ternarization method, we prepare two target
vectors of dimension 1,000,000: one has elements determined independently following a uniform
distribution; The other follows a normal distribution instead. Figure 2 (a) shows the cosine similarity
scores observed when we change the number M of non-zero elements of t. The highest score for
the target vector that has followed a uniform distribution is 0.94 when 667, 033 elements of t are
non-zero, while the highest score is 0.90 for a normal distribution when 540, 349 elements of t are
non-zero. The curves of the cosine similarity score are unimodal, and if this always holds true, finding
maximum cosine similarity scores can be easier.

Moreover, we found a fact that the cosine similarity is not easily affected by the dimension of a
ternary or binary vector. We calculated 10000 times of the maximum cosine similarity with the
dimension of target vectors increases by one at each time. Figure 2 (b) and (c) show the simulation
results: 1) regardless of the target vector under normal distribution or uniform distribution, ternary
vectors reserve a higher similarity. 2) the cosine similarity of ternary and binary vectors converge to a
stable value with the increasing of vector dimension, and the ternary vector has a smaller variance
comparing with the binary vector.

0 200000 400000 600000 800000 1000000
Number of Non-zero Elements

0.0

0.2

0.4

0.6

0.8

Co
ns

in
e

Si
m

ila
rit

y

Max value: 0.9
Max value: 0.94

54
03

49
 n

on
-z

er
o

el
em

en
ts

66
70

33
 n

on
-z

er
o

el
em

en
ts

(a): Relationshape of similarity and non-zero elements

normal
uniform

0 2000 4000 6000 8000 10000
Dimention of Target Vector

0.75

0.80

0.85

0.90

0.95

Mean value: 0.94
 Std value: 0.0024

Mean value: 0.87
 Std value: 0.0047

(b): Uniform Distribution

0 2000 4000 6000 8000 10000
Dimention of Target Vector

0.75

0.80

0.85

0.90

0.95

1.00
Mean value: 0.90
 Std value: 0.0038

Mean value: 0.80
 Std value: 0.0061

(c): Normal distribution
Ternary
mean
Binary

Figure 2: Simulation Result of Cosine Similarity by TNT method

3.2 Performance on Neural Networks

We perform our experiments on LeNet-5[4], VGG-7[4], and VGG16[8] using MNIST, CIFAR-10,
and ImageNet datasets respectively to first train a full precision network model, and then replace
the floating point parameters by the ternary parameters obtained by the proposed TNT. A precise
comparison between floating point model and ternary model is conducted.

The experiment results are shown in Table 1. It shows that, without network retraining, inferences with
ternary parameters only lose 0.21% and 0.14% of accuracies using LeNet-5 and VGG-7 respectively
on MNIST dataset. And it loses 2.22% of accuracy for VGG-7 on CIFAR-10 dataset. For VGG-16
network on ImageNet dataset, the Top-1 and Top-5 accuracy dropped 8% and 5.34%, respectively.
Moreover, the memory size of LeNet-5 and VGG-7 are reduced 16 times since each ternary weight
only requires 2 bits of memory. On the other hand, because of converting the first and last layer of
VGG-16 to ternary without fine-tuning has a significant affection on the accuracy, which is the same

4

phenomenon mentioned in [7], we do not convert the first and the last layer in VGG-16, and the
parameter size reduces 11.1 times.

Table 1: TNT Performance on Neural Networks

Base Line TNT
MNIST CIFAR-10 ImageNet MNIST CIFAR-10 ImageNet

LeNet-5 99.18% - - 98.97% - -
VGG-7 98.87% 91.31% - 98.73% 89.09% -
VGG-16 - - 64.26%, 85.59% - - 56.26%, 80.25%

4 Conclusions

In this paper, we proposed a target non-retraining ternary (TNT) method to convert a full precision
parameters model to a ternary parameters model accurately and quickly without retraining of the
network. In our approach, firstly, we succeeded in reducing the size of the searching range from 3N

to N by evaluating the cosine similarity between a target vector and a ternary vector. Secondly,
scaling-tuning factors are proposed coupling with the cosine similarity to further enable the TNT
to find the best ternary vector. Due to the smart tricks, TNT’s computational complexity is only
O(N logN). Thirdly, we showed that the distributions of parameters have an obvious affection on
the weight converting result. This implies that the initial distributions for parameters are important.
Moreover, we applied the TNT to several models. As a result, we verified that quantization by our
TNT method caused a small loss of accuracy.

References
[1] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep

neural networks with binary weights during propagations. In Advances in neural information
processing systems, pages 3123–3131, 2015.

[2] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European Conference on Computer
Vision, pages 525–542. Springer, 2016.

[3] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks. In Advances in neural information processing systems, pages 4107–4115,
2016.

[4] Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks. arXiv preprint arXiv:1605.04711,
2016.

[5] Lei Deng, Peng Jiao, Jing Pei, Zhenzhi Wu, and Guoqi Li. Gxnor-net: Training deep neural
networks with ternary weights and activations without full-precision memory under a unified
discretization framework. Neural Networks, 100:49–58, 2018.

[6] Hande Alemdar, Vincent Leroy, Adrien Prost-Boucle, and Frédéric Pétrot. Ternary neural
networks for resource-efficient ai applications. In 2017 International Joint Conference on Neural
Networks (IJCNN), pages 2547–2554. IEEE, 2017.

[7] Naveen Mellempudi, Abhisek Kundu, Dheevatsa Mudigere, Dipankar Das, Bharat Kaul, and
Pradeep Dubey. Ternary neural networks with fine-grained quantization. arXiv preprint
arXiv:1705.01462, 2017.

[8] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

5

	Introduction
	Method Description
	Tensor Decomposition and Vectorization
	Target Non-retrain Ternarization
	Cosine Similarity
	Scalar-Tuning

	Simulations
	Converting Performance
	Performance on Neural Networks

	Conclusions

