

EMC2: 5th Edition Co-located with NIPS’19 1

Abstract— Quantization for deep neural networks have
afforded models for edge devices that use less on-board
memory and enable efficient low-power inference. In this
paper, we present a comparison of model-parameter driven
quantization approaches that can achieve as low as 3-bit
precision without affecting accuracy. The post-training
quantization approaches are data-free, and the resulting
weight values are closely tied to the dataset distribution on
which the model has converged to optimality. We show
quantization results for a number of state-of-art deep
neural networks (DNN) using large dataset like ImageNet.
To better analyze quantization results, we describe the
overall range and local sparsity of values afforded through
various quantization schemes. We show the methods to
lower bit-precision beyond quantization limits with object
class clustering.

Index Terms—Deep learning, neural nets, low-precision,
quantization

I. INTRODUCTION
Significant progress has been recently made on algorithms,

networks and models to enable low-power edge applications.
For example, advances in network architecture search [1],
parameter quantization [2], and pruning [3] have afforded
models to below 100kB. However, there is still active research
to understand the relationships among low bit-precision, data
representation, and neural model architecture.

It is well understood in the deep learning community that to
capture a wide spectrum of low, mid and high-level features for
deep semantic understanding of complex patterns, DNNs with
many layers, nodes, and with high local and global connectivity
are needed. The success of recent DNNs (e.g. ResNet, Yolo,
MobileNet) in speech, vision, and natural language, comes in
part from the ability to train much larger models on much larger
dataset [4-6]. One fundamental challenge for quantization is to
find best assignment of bits for DNN parameter values that have
a degree of non-linearity that increases exponentially as dataset
size increases.

Through quantization, parameters for DNN can be converted
from 32-bit floating point (FP32) towards 16-bit or 8-bit
models, with minimal loss of accuracy. There are even
techniques that can quantized down to binary (single bit
precision). The main benefit of moving to lower bit-precision is
the higher power efficiency and smaller storage needed.
Moreover, DNN inference can be processed using more
efficient and parallel processor hardware. And as such,
quantization makes it possible to run DNN workloads that
support object and voice recognition, navigation, and medical
image analysis on smartphones and other edge devices.

Through training, the DNN model is learning a

representation that support tasks such as classification. The
converged DNN parameter values (e.g. its range and
distribution) represent the relationship between filter types and
class distribution. Therefore, in order to maintain algorithmic
performance after quantization, it is desirable to maintain a
“similar” range and distribution of learned DNN
representations in the quantized parameter values.

In this paper, we present a comparison of data-free
quantization schemes (i.e. asymmetric, symmetric, logarithmic)
on a number of DNN models trained with large dataset such as
ImageNet. Similar to [8], our quantization approaches do not
need training data for calibration. Instead, we show model-
parameter driven approaches can achieve as low as 3-bit
precision without significantly affecting accuracy.
Furthermore, we explore the quantization approach based on
the overall range and local sparsity of values to provide insights
to how well we can shrink a DNN model for a given training
dataset. We describe how well bits represent the model after
parameter quantization in preserving local distribution and a
broader range-per-bit for compression.

Our goal is to directly address the understanding of
quantization limits by exploring inter-layer comparison of
range value and distribution. In fact, we find that for a large
dataset like ImageNet, average bit-precision is 6-bits per
parameter, for a number of state-of-art DNN, adding to
previously published results [8-10]. Using range and
distribution of the quantized parameter values, we can better
describe quantization effects and offer insights for further
compression.

The research area in efficient DNN inference, particularly
through quantization, is gaining momentum and moving at a
very fast paced. To the best of our knowledge, we offer the
following contributions in this paper:
• Data-free quantization approaches, including (1) uniform

asymmetric, (2) uniform symmetric, and (2) logarithmic
using power-of-two, with results below 8-bit precision

• Analysis of parameter range and distribution across DNN
layers, with results of DNN models for ImageNet

• An approach using object class clustering to lower bit-
precision beyond quantization limits

• Comparison of accuracy and memory savings using better
file-compression (Gzip and 7.zip), with analysis of
encoding scheme.

This paper is organized as follows: in Section 2, we present
comparisons against related research in DNN quantization. In
Section 3, we briefly define our quantization approaches with
highlights on the range and distribution. In Section 4, we
describe our simulation setup, and we provide early results and
associated analysis that evaluates our approach. Finally, in
Section 5, we present our conclusions and discuss our future
work in this space.

Bit Efficient Quantization for Deep Neural Networks
Prateeth Nayak David Zhang Sek Chai

Latent AI SRI International Latent AI

EMC2: 5th Edition Co-located with NIPS’19 2

II. RELATED RESEARCH
In recent DNN quantization methods, FP32 values are

compressed onto a regularly spaced grid, with the original
values approximated with fixed point representations (e.g.
integer values) [7]. However, many implementations of this
quantization approach require the selection of a scaling factor
(e.g. max and min ranges) and zero-point offset to allow such a
mapping [2]. Other related quantization approaches have been
published recently [11-13] for reducing bit-precision and
memory footprint.

Our quantization approaches do not need training data for
calibration. Based on the quantization taxonomy provided in
[8], our approach can be considered a Level-1 post-training (No
data and no backpropagation required. Method works for any
model). Similar to [8], our approach is a data-free quantization,
and in this paper, we show model-parameter driven approaches
that can achieve as low as 3-bit precision without significantly
affecting accuracy. Furthermore, we explore the quantization’s
approach based on the overall range and local sparsity of values
to provide insights to how well we can shrink a DNN model for
a given training dataset.

Other methods for quantization need architecture changes or
training with quantization in mind [9-10,14-16]. These methods
may include network architecture search to selectively bound
the target bit precision or fine-tuning the bit-precision
iteratively during training. Similarly, training aware
quantization methods may binarize [17-19] or ternarize [10] the
resultant networks so that they operate at great efficiency for
inference (e.g. expensive multiplications and additions are
replaced by logical operations). Training aware quantization
incur a larger overhead to arrive at quantized parameters
because they generally need to be trained from scratch.
Furthermore, quantizing models to binary often leads to strong
performance degradation.

Even though these approaches share the same objective, the
methods are quite different. In this paper, we focus on post-
training quantization using data-free quantization schemes (i.e.
uniform asymmetric, logarithmic). Many previous papers
published results at byte precision. To better offer qualitative
comparisons of quantization approaches, we show results
below the 8-bit boundaries to find insights on bit-precision
limits. Furthermore, previous quantitative comparisons of these
approaches are focused on overall file-size vs accuracy, rather
than the fitting to the overall inter-level distributions of
quantized parameter values from the original FP32 distribution.

III. APPROACH
In this section, we provide the details on the different

quantization approaches which are purely model parameter
driven. First, we provide the mathematical formulation for these
approaches. Then we describe the quantization effects by
observing that ability of the approach to preserve the range and
density of parameter values. Then we show visualization of the
quantization effects on the model parameter values from the
full-precision to lower precision of a selected DNN layer.

III.a. Quantization Schemes

We have selected two linear, range-based approach
(asymmetric, and symmetric) and one logarithmic-scale
(power-of-two) approach. The approaches are chosen to give
different benefits on the same tensor quantization.

(1) Uniform-ASYMM - In this mode, we map the minimum
and maximum of the float range to integer range with a
quantization bias term. Let us denote the original tensor by
𝑥", output quantized tensor by 𝑥#, and chosen number of
bits for quantization by n.

𝑥# = 𝑟𝑜𝑢𝑛𝑑 *+𝑥" −	𝑚𝑖𝑛012
3456

780915	7:;91
<

(2) Uniform-SYMM – In this mode, we map original tensor
to the quantized range with maximum absolute value of the
minimum or maximum of the original tensor. There is no
quantization bias term and it is symmetric around zero.

𝑥# = 𝑟𝑜𝑢𝑛𝑑 =𝑥"
2;56 − 1
𝑚𝑎𝑥A𝑥"A

B

(3) Power-of-2 – This mode involves mapping the values
original tensor to the closest power of 2 value. This
preserves the range of float tensor.

𝑥# = (𝑠𝑖𝑔𝑛𝑚𝑎𝑠𝑘)2HIJ;KLMINOA01AP

For evaluation, we used the workflow [21] that builds upon
a TensorFlow framework to implement these quantization
schemes. The workflow supports the import of various
convolution-based models and we quantize the model
parameters, namely, convolution kernels, batch norm layers,
and dense layers. The resulting model post-quantization is
evaluated within the same framework for a given set of test data.
It is to be noted that, the data is only required for the purpose of
evaluation and not for the quantization of the model itself.

III.b. Quantization Effects on Weight Distribution

Most researchers consider accuracy drop [2,3,7,8] as the
only metric to evaluate the performance of the quantization
method. Instead, we observed that quantization results can be
characterized on how well the model parameter values are
spread on the quantized range. That is, given a bit-precision
target, quantization approaches are effectively striving to
achieve a Bit-Efficiency (BE) threshold. A quantization result
is said to have a better BE, if the method can provide a higher
range-per-bit coverage of baseline precision whilst preserving
the density-per-bit for each of the quantized level as compared
to the baseline. Much like a bit efficiency metric in compression
standards (i.e. best utilization of a bit to encode a data stream),
neural network quantization should have a similar BE
comparison to more eloquently describe the quantization result.

Figure 1 illustrates the quartile range plots per-channel for
different quantization results on the 9th layer (32 channels) of
ResNet18 pre-trained on CIFAR10. Here, we can see that the
uniform quantization approaches are able to preserve the mean
of the baseline tensor, while the logarithmic approach of power-
of-two maintains the range for each channel with lesser outlier
parameters.

EMC2: 5th Edition Co-located with NIPS’19 3

Figure 1. Quantization effects on quartile ranges of Tensors for different

approaches. The FLOAT32 is the original tensor.

Figure 2 (left) shows the histogram distribution of weights
from different quantization approach and Figure 2 (right) shows
the weight histogram distribution from 32 to 2 bit-quantization.
Regardless of the approach, the distribution profile is close. We
find that quantization results are similar if the assumption that
range and density of the model parameters are preserved. The
best quantization method is the one that is able to preserve the
original model parameter distribution. As such, we are not
advocating a single quantization approach, but instead, a
workflow that provides the flexibility to achieve the best BE.
Furthermore, beyond BE, selected quantization schemes (such
as power-of-two) may provide flexibility in hardware
performance (discussed later in Section IV).

Figure 2. Histogram of weight distribution of ResNet Layers for bit

precisions and approaches.

IV. RESULTS AND EVALUATION
We evaluated the three different quantization schemes using

state-of-art baseline models and dataset. First, we show results
using CIFAR10 classification task to highlight opportunities to
improve accuracy with object class clustering. Second, we
show quantization results for six classification models on
ImageNet classification task. We iteratively evaluate these
models after quantizing each level of bit-precision. Third, we
include quantization results for two models pre-trained on
PASCAL-VOC detection task, and MS-COCO detection task.
Finally, we show compression effects and power-savings from
quantization using power-of-two.

IV.a. Hierarchical Clustering to Improve Accuracy

Table 1 shows quantization results for ResNet-18 pre-
trained for CIFAR10 classification achieving as low as 3-bit
precision without affecting accuracy drastically. We show
results at byte boundary for comparison purposes with
published results.

Table 1. ResNet18 Quantization Results down-to 2-bits with model size.

Figure 3. Confusion matrices at baseline and 3-bit. The classes dog and cat

are misclassified due to overlapping distribution characteristics. This effect of
quantization degrades model performance at lower bit-precision.

In this example, we observed in the confusion matrix (Figure
3) that quantization at low-bit precisions causes closely
overlapping class distributions to be misclassified. This is due
the effect of reducing the differentiating ability with the lower
bit-precision. The quantization effect degrades the accuracy
more when the individual class distributions are overlapping in
the dataset on which model has converged to optimality. It is
harder for the model to differentiate and hence the solution to
this can be through hierarchical grouping of similar class
distributions. When the object class dogs and cats are grouped
into an object class “small pets”, the new object class achieves
90% accuracy, and overall task accuracy rises even at low bit-
precision.

Table 2. Resnet18 CIFAR10 results for Hierarchical Clustering of class
distributions with overlapping characteristics. Baseline model is 32-bit.

Table 2 shows the results after performing the hierarchical
clustering of the class distributions which are not sufficiently
orthogonal for the quantization at lower precision. This
example shows that the overall problem statement can be
redefined in a quantization-friendly manner for multi-class
classification. For example, in autonomous driving tasks, it is
not important to differentiate dogs vs cats, and thus, you don’t
need to expend extra bits for it.

IV.b. Quantization Effect vs Model Architecture

When the neural networks are similar (e.g. feed-forward
convolutional networks), we observed that all the models
converge to a similar bit-precision level. Specifically, after
uniform quantization approaches give an accuracy drop of less
than ~4% up to 6-bit precision before avalanching to very poor
results. This is consistent with the Power-of-2 quantization
approach as well. The results are summarized in Table 3(a)-
3(c).

EMC2: 5th Edition Co-located with NIPS’19 4

Table 3(a). Quantization of common DNNs (ImageNet) with ASYMM

Table 3(b). Quantization of Common DNNs (ImageNet) with SYMM

Table 3(c). Quantization of Common DNNs (ImageNet) with Power-of-2

Figure 4 depicts the quantization limit seen across all of the
selected ImageNet converged models. From this, we see a
“knee of the curve” at 6-bits, suggesting that regardless of
model architecture, the quantization limit is closely tied to the
dataset. Furthermore, we anticipate that while the different
model architectures learn different visual features and semantic
associations, at the 6-bit precision, all of the models are limited
in their capacity, with respect to object class differentiability.

Figure 4. All models show a quantization limit of 6-bit before steep drop in
accuracy. The graph shows the ASYMM quantization approach results
across models chosen.

IV.c. Quantization Effect on Object Detection Tasks

For evaluation of object detection tasks, we chose the Tiny-
YoloV2 model pre-trained on VOC task, and the Mobilenet-
SSD pre-trained on MS-COCO task. Table 4 summarizes the
results on both the models. We have included a baseline of FP32
accuracy and file sizes. Then, in the middle and right columns,
we show results different quantization targets (8-bit and below).

Table 4. Quantization results (Uniform ASYMM) on object detection models

Object detection networks generate bounding box
coordinates for detected objects. As such, we show results as
mAP scores. At low-bit precision, the model must still able to
differentiate the object classes as well as identify the location.
For Tiny-Yolo, we show a reasonable accuracy loss (12.6-
13.4%) for a large gain in compression (76.7-85.5%). We
anticipate that the accuracy loss is due to the shallow layers in
Tiny-Yolo, which makes it less robust with quantization.
Specifically, the MobileNet-SSD model maintains its accuracy
within 1-2% loss. We can see that it achieves close to 52%
compression benefit without affecting accuracy whilst keeping
good precision for the bounding box regressors.

We observed that quantizing the initial layers of the model
architecture affects the model performance the most, suggesting
(1) the need to preserve the initial learned features, and (2)
better results with quantization of only the semantic
information layers. Specifically, we show these results for
MobileNet-SSD, with partial quantization (partial 8-bits) of the
backbone layers and the complete quantization of all backbone.

Results in Table 4 also suggests that the bounding box
coordinates in object detection models require a better precision
of parameters to regress to a particular real value based on the
image coordinates. As such, future quantization schemes may
separate the classification and bounding-box components to
better compress the model.

IV.d. Compression and Power Benefits

Table 5 shows the file size comparisons using a compression
engine (G-zip, 7-zip). In this paper, after we quantize, we store
the results back in floating point notation so that we can easily
run and compare against baseline FP32. We understand that if
we save directly in byte format, we can get 4x savings from the
FP32. We show in Table 5 that we can already get 5-6x saving
using G-zip compression for the 6-bit quantization (Uniform).

Table 5. Compression numbers using GZip and 7zip

Using logarithmic (power-of-two) quantization, we can get
an additional 27%-37% improvement (last column). We find
that 7-zip provides better compression for power-of-two,
because 7-zip algorithm can better create a dictionary of
symbols to compress. In power-of-two, we only have distinct
values (1/256…1/4,1/2,…,2,4,8,etc.), and therefore 7-zip’s
compression approach matches this scheme. It is also important
to note that power-of-two scheme has high BE metric, with
dense population of values between -1 and 1, with sparser
distribution elsewhere to cover a wide range.

EMC2: 5th Edition Co-located with NIPS’19 5

Table 6. Training-Aware Quantization results using Power-of-2

In Table 6, we show a training-aware (power-of-two)
quantization results. We see at least an 86% compression using
7-zip, with some reduction in accuracy. With power-of-2
quantization, we can afford reduction in both computational
latency and power consumption. For example, we can use bit-
shifting instead of multiplications for weights that are powers
of two. Processor circuitry using barrel shifters or FPGA logic
circuit can easily route values by left or right shifts.

To quantify the saving, we perform simple experiments on
both laptop processor (Intel i7, 2.8GHz, 32GB RAM) and a
Raspberry PI (ARM Cortex A53, 1.4GHz, 1GB RAM). We ran
a tiny CNN model (5-layer LeNet, trained on MNIST, averaged
over 10K frame inputs), and we observed 37% and 22% latency
improvements from FP32 to integer bit-shifting. Both inference
codes were compiled using GCC. Similarly, we observed an
energy savings of 37.7% on a Raspberry Pi. We did not measure
power on the i7 processor as there are other resident software
services in operation. We also know that additional
optimization can be implement on both FP32 and integer
computation (e.g. using vector instructions and hand-tuned
kernels), but the early results shown here are encouraging.

V. CONCLUSIONS AND FUTURE WORK
We explored various data-free quantization algorithms for a

number of deep neural networks (DNN) to better understand
quantization limits and their relationships to dataset and model.
All of our quantization scheme (asymmetric, symmetric,
power-of-two) achieves near original model accuracy for every
model we tested. This provides flexible hardware configuration
that uses hardware-bound instructions to reduce power and size.
The variation of quantization may also imply robust sparsity
encoding of the neural networks.

Using ImageNet as a reference dataset, we find that the
selected state-of-art DNN all converge similarly around an
average 6-bit precision. We anticipate this is due to a number
of factors, including: (1) the DNNs have similar feed-forward
convolutional layer that essentially learn similar features, (2)
the DNNs have sufficient capacity and depth such that they
manage to learn the dataset distribution. We find that the best
quantization results come from the ability to both provide the
range and distribution of bits needed by the model to learn
dataset distribution. We show that we can improve bit precision
beyond quantization limits with simple object class clustering.

Going forward, there is much more we can do as future work
to extend the quantization schemes. We are exploring ways to
automate the post-training quantization schemes to not only
compress the parameters, but also to visualize the results so that
the AI developer can best chart out the next steps. We are
exploring means to automate the selection of the quantization
schemes, in addition to chaining the processes up (e.g.
symmetric followed by power-of-two) because successive
quantization steps may tease out different qualities of the
parameter variations with respect to range and density. We are

also exploring regression quantization that separates the
classification and bounding-box components.

VI. ACKNOWLEDGEMENTS
We acknowledge the support/effort by the Latent AI and SRI
teams: Vasil Daskalopoulos, Mark Griffin, Indu Kandaswamy,
Joe Zhang, Saurabh Farkya and Aswin Raghavan.

REFERENCES
[1] M.Wistuba, “A survey on neural architecture search”,
arXiv: 1905.01392, May 2019
[2] R. Krishnamoorthi, “Quantizing deep convolutional
networks for efficient inference: A whitepaper,” arXiv
1806:0842, June 2018
[3] S. Han, et al. "Learning both Weights and Connections for
Efficient Neural Network." Advances in Neural Information
Processing Systems. 2015.
[4] A. Krizhevsky, et. al., “Imagenet classification with deep
convolutional neural networks”, In Advances in neural
information processing systems, pp. 1097–1105, 2012.
[5] A. Graves, et. al., “Framewise phoneme classification with
bidirectional LSTM and other neural network architectures,”
Neural Networks, 18(5):602–610, 2005.
[6] R. Collobert, et. al., “Natural language processing (almost)
from scratch”, JMLR, 12:2493–2537, 2011.
[7] Y. Guo, “A survey on methods and theories of quantized
neural network”, arXiv 1808.04752, Aug 2018
[8] M. Nagel, et. al., “Data-Free Quantization through Weight
Equalization and Bias Correction”, arXiv 1906.0472, June 2019
[9] A. Raghavan, et.al., “BitNet: Bit-Regularized Deep Neural
Networks,” arXiv 1708.04788, Aug 2017
[10] S. Parajuli, et.al., “Generalized Ternary Connect: End-to-
End Learning and Compression of Multiplication-Free Deep
Neural Networks,” arXiv 1811.04985, Nov 2018
[11] S. Gupta, et.al., “Deep learning with limited numerical
precision”. In ICML 2015, pages 1737–1746, July 2015.
[12] B. Jacob, et. al., “Quantization and training of neural
networks for efficient integer-arithmetic-only inference”.
CVPR 2018.
[13] A. Zhou, et.al., “Incremental network quantization:
Towards lossless CNNs with low-precision weights”.
arXiv:1702.03044, 2017.
[21] C. Louizos, et. al., “Relaxed quantization for discretized
neural networks”, ICLR 2019.
[31] T. Sheng, et. al. A quantization-friendly separable
convolution for mobilenets. EMC2 workshop, 2018.
[16] S. Zhou, et. al., “Dorefa-net: Training low bitwidth
convolutional neural networks with low bitwidth gradients.”
arXiv:1606.06160, 2016.
[17] M. Courbariaux, et.al. “Binary Connect: Training deep
neural networks with binary weights during propagations”,
NIPS’15, pp. 3123–3131, 2015.
[18] J. W. T. Peters and M. Welling, “Probabilistic binary
neural networks”, arXiv preprint arxiv:1809.03368, 2018.
[19] M. Rastegari, et. al., “Xnor-net: Imagenet classification
using binary convolutional neural networks”, ECCV 2016.
[20] F. Li and B. Liu. “Ternary weight networks”, arXiv:
1605.04711, 2016.
[21] LEIP Compress, https://latentai.com/#solutions

