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Abstract— Quantization for deep neural networks have 
afforded models for edge devices that use less on-board 
memory and enable efficient low-power inference. In this 
paper, we present a comparison of model-parameter driven 
quantization approaches that can achieve as low as 3-bit 
precision without affecting accuracy. The post-training 
quantization approaches are data-free, and the resulting 
weight values are closely tied to the dataset distribution on 
which the model has converged to optimality. We show 
quantization results for a number of state-of-art deep 
neural networks (DNN) using large dataset like ImageNet. 
To better analyze quantization results, we describe the 
overall range and local sparsity of values afforded through 
various quantization schemes. We show the methods to 
lower bit-precision beyond quantization limits with object 
class clustering. 
 

Index Terms—Deep learning, neural nets, low-precision, 
quantization 

I. INTRODUCTION 
Significant progress has been recently made on algorithms, 

networks and models to enable low-power edge applications. 
For example, advances in network architecture search [1], 
parameter quantization [2], and pruning [3] have afforded 
models to below 100kB. However, there is still active research 
to understand the relationships among low bit-precision, data 
representation, and neural model architecture.  

It is well understood in the deep learning community that to 
capture a wide spectrum of low, mid and high-level features for 
deep semantic understanding of complex patterns, DNNs with 
many layers, nodes, and with high local and global connectivity 
are needed. The success of recent DNNs (e.g. ResNet, Yolo, 
MobileNet) in speech, vision, and natural language, comes in 
part from the ability to train much larger models on much larger 
dataset [4-6]. One fundamental challenge for quantization is to 
find best assignment of bits for DNN parameter values that have 
a degree of non-linearity that increases exponentially as dataset 
size increases. 

Through quantization, parameters for DNN can be converted 
from 32-bit floating point (FP32) towards 16-bit or 8-bit 
models, with minimal loss of accuracy. There are even 
techniques that can quantized down to binary (single bit 
precision). The main benefit of moving to lower bit-precision is 
the higher power efficiency and smaller storage needed. 
Moreover, DNN inference can be processed using more 
efficient and parallel processor hardware. And as such, 
quantization makes it possible to run DNN workloads that 
support object and voice recognition, navigation, and medical 
image analysis on smartphones and other edge devices. 

Through training, the DNN model is learning a 

representation that support tasks such as classification. The 
converged DNN parameter values (e.g. its range and 
distribution) represent the relationship between filter types and 
class distribution. Therefore, in order to maintain algorithmic 
performance after quantization, it is desirable to maintain a 
“similar” range and distribution of learned DNN 
representations in the quantized parameter values. 

In this paper, we present a comparison of data-free 
quantization schemes (i.e. asymmetric, symmetric, logarithmic) 
on a number of DNN models trained with large dataset such as 
ImageNet. Similar to [8], our quantization approaches do not 
need training data for calibration. Instead, we show model-
parameter driven approaches can achieve as low as 3-bit 
precision without significantly affecting accuracy. 
Furthermore, we explore the quantization approach based on 
the overall range and local sparsity of values to provide insights 
to how well we can shrink a DNN model for a given training 
dataset. We describe how well bits represent the model after 
parameter quantization in preserving local distribution and a 
broader range-per-bit for compression. 

Our goal is to directly address the understanding of 
quantization limits by exploring inter-layer comparison of 
range value and distribution. In fact, we find that for a large 
dataset like ImageNet, average bit-precision is 6-bits per 
parameter, for a number of state-of-art DNN, adding to 
previously published results [8-10]. Using range and 
distribution of the quantized parameter values, we can better 
describe quantization effects and offer insights for further 
compression. 

The research area in efficient DNN inference, particularly 
through quantization, is gaining momentum and moving at a 
very fast paced. To the best of our knowledge, we offer the 
following contributions in this paper: 
• Data-free quantization approaches, including (1) uniform 

asymmetric, (2) uniform symmetric, and (2) logarithmic 
using power-of-two, with results below 8-bit precision 

• Analysis of parameter range and distribution across DNN 
layers, with results of DNN models for ImageNet 

• An approach using object class clustering to lower bit-
precision beyond quantization limits  

• Comparison of accuracy and memory savings using better 
file-compression (Gzip and 7.zip), with analysis of 
encoding scheme. 

This paper is organized as follows: in Section 2, we present 
comparisons against related research in DNN quantization. In 
Section 3, we briefly define our quantization approaches with 
highlights on the range and distribution. In Section 4, we 
describe our simulation setup, and we provide early results and 
associated analysis that evaluates our approach. Finally, in 
Section 5, we present our conclusions and discuss our future 
work in this space. 
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II. RELATED RESEARCH 
In recent DNN quantization methods, FP32 values are 

compressed onto a regularly spaced grid, with the original 
values approximated with fixed point representations (e.g. 
integer values) [7]. However, many implementations of this 
quantization approach require the selection of a scaling factor 
(e.g. max and min ranges) and zero-point offset to allow such a 
mapping [2]. Other related quantization approaches have been 
published recently [11-13] for reducing bit-precision and 
memory footprint. 

Our quantization approaches do not need training data for 
calibration. Based on the quantization taxonomy provided in 
[8], our approach can be considered a Level-1 post-training (No 
data and no backpropagation required. Method works for any 
model). Similar to [8], our approach is a data-free quantization, 
and in this paper, we show model-parameter driven approaches 
that can achieve as low as 3-bit precision without significantly 
affecting accuracy. Furthermore, we explore the quantization’s 
approach based on the overall range and local sparsity of values 
to provide insights to how well we can shrink a DNN model for 
a given training dataset. 

Other methods for quantization need architecture changes or 
training with quantization in mind [9-10,14-16]. These methods 
may include network architecture search to selectively bound 
the target bit precision or fine-tuning the bit-precision 
iteratively during training. Similarly, training aware 
quantization methods may binarize [17-19] or ternarize [10] the 
resultant networks so that they operate at great efficiency for 
inference (e.g. expensive multiplications and additions are 
replaced by logical operations). Training aware quantization 
incur a larger overhead to arrive at quantized parameters 
because they generally need to be trained from scratch. 
Furthermore, quantizing models to binary often leads to strong 
performance degradation.  

Even though these approaches share the same objective, the 
methods are quite different. In this paper, we focus on post-
training quantization using data-free quantization schemes (i.e. 
uniform asymmetric, logarithmic). Many previous papers 
published results at byte precision. To better offer qualitative 
comparisons of quantization approaches, we show results 
below the 8-bit boundaries to find insights on bit-precision 
limits. Furthermore, previous quantitative comparisons of these 
approaches are focused on overall file-size vs accuracy, rather 
than the fitting to the overall inter-level distributions of 
quantized parameter values from the original FP32 distribution. 

III. APPROACH 
In this section, we provide the details on the different 

quantization approaches which are purely model parameter 
driven. First, we provide the mathematical formulation for these 
approaches. Then we describe the quantization effects by 
observing that ability of the approach to preserve the range and 
density of parameter values. Then we show visualization of the 
quantization effects on the model parameter values from the 
full-precision to lower precision of a selected DNN layer.  
 
 

III.a. Quantization Schemes 

We have selected two linear, range-based approach 
(asymmetric, and symmetric) and one logarithmic-scale 
(power-of-two) approach. The approaches are chosen to give 
different benefits on the same tensor quantization. 

(1) Uniform-ASYMM - In this mode, we map the minimum 
and maximum of the float range to integer range with a 
quantization bias term. Let us denote the original tensor by 
𝑥", output quantized tensor by 𝑥#, and chosen number of 
bits for quantization by n.  

𝑥# = 𝑟𝑜𝑢𝑛𝑑 *+𝑥" −	𝑚𝑖𝑛012
3456

780915	7:;91
< 

(2) Uniform-SYMM – In this mode, we map original tensor 
to the quantized range with maximum absolute value of the 
minimum or maximum of the original tensor. There is no 
quantization bias term and it is symmetric around zero. 

𝑥# = 𝑟𝑜𝑢𝑛𝑑 =𝑥"
2;56 − 1
𝑚𝑎𝑥A𝑥"A
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(3) Power-of-2 – This mode involves mapping the values 
original tensor to the closest power of 2 value. This 
preserves the range of float tensor. 

𝑥# = (𝑠𝑖𝑔𝑛𝑚𝑎𝑠𝑘)2HIJ;KLMINOA01AP 
 

For evaluation, we used the workflow [21] that builds upon 
a TensorFlow framework to implement these quantization 
schemes. The workflow supports the import of various 
convolution-based models and we quantize the model 
parameters, namely, convolution kernels, batch norm layers, 
and dense layers. The resulting model post-quantization is 
evaluated within the same framework for a given set of test data. 
It is to be noted that, the data is only required for the purpose of 
evaluation and not for the quantization of the model itself. 

III.b. Quantization Effects on Weight Distribution 

Most researchers consider accuracy drop [2,3,7,8] as the 
only metric to evaluate the performance of the quantization 
method. Instead, we observed that quantization results can be 
characterized on how well the model parameter values are 
spread on the quantized range. That is, given a bit-precision 
target, quantization approaches are effectively striving to 
achieve a Bit-Efficiency (BE) threshold. A quantization result 
is said to have a better BE, if the method can provide a higher 
range-per-bit coverage of baseline precision whilst preserving 
the density-per-bit for each of the quantized level as compared 
to the baseline. Much like a bit efficiency metric in compression 
standards (i.e. best utilization of a bit to encode a data stream), 
neural network quantization should have a similar BE 
comparison to more eloquently describe the quantization result. 

Figure 1 illustrates the quartile range plots per-channel for 
different quantization results on the 9th layer (32 channels) of 
ResNet18 pre-trained on CIFAR10. Here, we can see that the 
uniform quantization approaches are able to preserve the mean 
of the baseline tensor, while the logarithmic approach of power-
of-two maintains the range for each channel with lesser outlier 
parameters. 
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Figure 1. Quantization effects on quartile ranges of Tensors for different 

approaches. The FLOAT32 is the original tensor. 

Figure 2 (left) shows the histogram distribution of weights 
from different quantization approach and Figure 2 (right) shows 
the weight histogram distribution from 32 to 2 bit-quantization.  
Regardless of the approach, the distribution profile is close. We 
find that quantization results are similar if the assumption that 
range and density of the model parameters are preserved. The 
best quantization method is the one that is able to preserve the 
original model parameter distribution. As such, we are not 
advocating a single quantization approach, but instead, a 
workflow that provides the flexibility to achieve the best BE. 
Furthermore, beyond BE, selected quantization schemes (such 
as power-of-two) may provide flexibility in hardware 
performance (discussed later in Section IV). 

 
Figure 2. Histogram of weight distribution of ResNet Layers for bit 

precisions and approaches. 

IV. RESULTS AND EVALUATION 
We evaluated the three different quantization schemes using 

state-of-art baseline models and dataset. First, we show results 
using CIFAR10 classification task to highlight opportunities to 
improve accuracy with object class clustering. Second, we 
show quantization results for six classification models on 
ImageNet classification task. We iteratively evaluate these 
models after quantizing each level of bit-precision. Third, we 
include quantization results for two models pre-trained on 
PASCAL-VOC detection task, and MS-COCO detection task. 
Finally, we show compression effects and power-savings from 
quantization using power-of-two.  

IV.a.  Hierarchical Clustering to Improve Accuracy  

Table 1 shows quantization results for ResNet-18 pre-
trained for CIFAR10 classification achieving as low as 3-bit 
precision without affecting accuracy drastically. We show 
results at byte boundary for comparison purposes with 
published results.  

Table 1. ResNet18 Quantization Results down-to 2-bits with model size. 
 

  
Figure 3. Confusion matrices at baseline and 3-bit. The classes dog and cat 

are misclassified due to overlapping distribution characteristics. This effect of 
quantization degrades model performance at lower bit-precision. 

In this example, we observed in the confusion matrix (Figure 
3) that quantization at low-bit precisions causes closely 
overlapping class distributions to be misclassified. This is due 
the effect of reducing the differentiating ability with the lower 
bit-precision. The quantization effect degrades the accuracy 
more when the individual class distributions are overlapping in 
the dataset on which model has converged to optimality. It is 
harder for the model to differentiate and hence the solution to 
this can be through hierarchical grouping of similar class 
distributions. When the object class dogs and cats are grouped 
into an object class “small pets”, the new object class achieves 
90% accuracy, and overall task accuracy rises even at low bit-
precision. 

 
Table 2. Resnet18 CIFAR10 results for Hierarchical Clustering of class 
distributions with overlapping characteristics. Baseline model is 32-bit. 

Table 2 shows the results after performing the hierarchical 
clustering of the class distributions which are not sufficiently 
orthogonal for the quantization at lower precision. This 
example shows that the overall problem statement can be 
redefined in a quantization-friendly manner for multi-class 
classification. For example, in autonomous driving tasks, it is 
not important to differentiate dogs vs cats, and thus, you don’t 
need to expend extra bits for it. 

IV.b. Quantization Effect vs Model Architecture 

When the neural networks are similar (e.g. feed-forward 
convolutional networks), we observed that all the models 
converge to a similar bit-precision level. Specifically, after 
uniform quantization approaches give an accuracy drop of less 
than ~4% up to 6-bit precision before avalanching to very poor 
results. This is consistent with the Power-of-2 quantization 
approach as well. The results are summarized in Table 3(a)-
3(c).  
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Table 3(a). Quantization of common DNNs (ImageNet) with ASYMM 

 
Table 3(b). Quantization of Common DNNs (ImageNet) with SYMM 

 
Table 3(c). Quantization of Common DNNs (ImageNet) with Power-of-2 

Figure 4 depicts the quantization limit seen across all of the 
selected ImageNet converged models. From this, we see a 
“knee of the curve” at 6-bits, suggesting that regardless of 
model architecture, the quantization limit is closely tied to the 
dataset. Furthermore, we anticipate that while the different 
model architectures learn different visual features and semantic 
associations, at the 6-bit precision, all of the models are limited 
in their capacity, with respect to object class differentiability. 

 
Figure 4. All models show a quantization limit of 6-bit before steep drop in 
accuracy. The graph shows the ASYMM quantization approach results 
across models chosen. 

IV.c. Quantization Effect on Object Detection Tasks 

For evaluation of object detection tasks, we chose the Tiny-
YoloV2 model pre-trained on VOC task, and the Mobilenet-
SSD pre-trained on MS-COCO task. Table 4 summarizes the 
results on both the models. We have included a baseline of FP32 
accuracy and file sizes. Then, in the middle and right columns, 
we show results different quantization targets (8-bit and below). 

 
Table 4. Quantization results (Uniform ASYMM) on object detection models 

Object detection networks generate bounding box 
coordinates for detected objects. As such, we show results as 
mAP scores. At low-bit precision, the model must still able to 
differentiate the object classes as well as identify the location. 
For Tiny-Yolo, we show a reasonable accuracy loss (12.6-
13.4%) for a large gain in compression (76.7-85.5%). We 
anticipate that the accuracy loss is due to the shallow layers in 
Tiny-Yolo, which makes it less robust with quantization. 
Specifically, the MobileNet-SSD model maintains its accuracy 
within 1-2% loss. We can see that it achieves close to 52% 
compression benefit without affecting accuracy whilst keeping 
good precision for the bounding box regressors. 

We observed that quantizing the initial layers of the model 
architecture affects the model performance the most, suggesting 
(1) the need to preserve the initial learned features, and (2) 
better results with quantization of only the semantic 
information layers. Specifically, we show these results for 
MobileNet-SSD, with partial quantization (partial 8-bits) of the 
backbone layers and the complete quantization of all backbone. 

Results in Table 4 also suggests that the bounding box 
coordinates in object detection models require a better precision 
of parameters to regress to a particular real value based on the 
image coordinates. As such, future quantization schemes may 
separate the classification and bounding-box components to 
better compress the model. 

IV.d. Compression and Power Benefits 

Table 5 shows the file size comparisons using a compression 
engine (G-zip, 7-zip). In this paper, after we quantize, we store 
the results back in floating point notation so that we can easily 
run and compare against baseline FP32. We understand that if 
we save directly in byte format, we can get 4x savings from the 
FP32. We show in Table 5 that we can already get 5-6x saving 
using G-zip compression for the 6-bit quantization (Uniform).  

 
Table 5. Compression numbers using GZip and 7zip 

Using logarithmic (power-of-two) quantization, we can get 
an additional 27%-37% improvement (last column). We find 
that 7-zip provides better compression for power-of-two, 
because 7-zip algorithm can better create a dictionary of 
symbols to compress. In power-of-two, we only have distinct 
values (1/256…1/4,1/2,…,2,4,8,etc.), and therefore 7-zip’s 
compression approach matches this scheme. It is also important 
to note that power-of-two scheme has high BE metric, with 
dense population of values between -1 and 1, with sparser 
distribution elsewhere to cover a wide range. 
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Table 6. Training-Aware Quantization results using Power-of-2 

In Table 6, we show a training-aware (power-of-two) 
quantization results. We see at least an 86% compression using 
7-zip, with some reduction in accuracy. With power-of-2 
quantization, we can afford reduction in both computational 
latency and power consumption. For example, we can use bit-
shifting instead of multiplications for weights that are powers 
of two. Processor circuitry using barrel shifters or FPGA logic 
circuit can easily route values by left or right shifts.  

To quantify the saving, we perform simple experiments on 
both laptop processor (Intel i7, 2.8GHz, 32GB RAM) and a 
Raspberry PI (ARM Cortex A53, 1.4GHz, 1GB RAM). We ran 
a tiny CNN model (5-layer LeNet, trained on MNIST, averaged 
over 10K frame inputs), and we observed 37% and 22% latency 
improvements from FP32 to integer bit-shifting. Both inference 
codes were compiled using GCC. Similarly, we observed an 
energy savings of 37.7% on a Raspberry Pi. We did not measure 
power on the i7 processor as there are other resident software 
services in operation. We also know that additional 
optimization can be implement on both FP32 and integer 
computation (e.g. using vector instructions and hand-tuned 
kernels), but the early results shown here are encouraging. 

V. CONCLUSIONS AND FUTURE WORK 
We explored various data-free quantization algorithms for a 

number of deep neural networks (DNN) to better understand 
quantization limits and their relationships to dataset and model. 
All of our quantization scheme (asymmetric, symmetric, 
power-of-two) achieves near original model accuracy for every 
model we tested. This provides flexible hardware configuration 
that uses hardware-bound instructions to reduce power and size. 
The variation of quantization may also imply robust sparsity 
encoding of the neural networks. 

Using ImageNet as a reference dataset, we find that the 
selected state-of-art DNN all converge similarly around an 
average 6-bit precision. We anticipate this is due to a number 
of factors, including: (1) the DNNs have similar feed-forward 
convolutional layer that essentially learn similar features, (2) 
the DNNs have sufficient capacity and depth such that they 
manage to learn the dataset distribution. We find that the best 
quantization results come from the ability to both provide the 
range and distribution of bits needed by the model to learn 
dataset distribution. We show that we can improve bit precision 
beyond quantization limits with simple object class clustering. 

Going forward, there is much more we can do as future work 
to extend the quantization schemes. We are exploring ways to 
automate the post-training quantization schemes to not only 
compress the parameters, but also to visualize the results so that 
the AI developer can best chart out the next steps. We are 
exploring means to automate the selection of the quantization 
schemes, in addition to chaining the processes up (e.g. 
symmetric followed by power-of-two) because successive 
quantization steps may tease out different qualities of the 
parameter variations with respect to range and density. We are 

also exploring regression quantization that separates the 
classification and bounding-box components. 
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