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Abstract

Object detection remains an active area of research in the field of computer vision,
and considerable advances and successes has been achieved in this area through the
design of deep convolutional neural networks for tackling object detection. Despite
these successes, one of the biggest challenges to widespread deployment of such
object detection networks on edge and mobile scenarios is the high computational
and memory requirements. As such, there has been growing research interest
in the design of efficient deep neural network architectures catered for edge and
mobile usage. In this study, we introduce YOLO Nano, a highly compact deep
convolutional neural network for the task of object detection. A human-machine
collaborative design strategy is leveraged to create YOLO Nano, where principled
network design prototyping, based on design principles from the YOLO family
of single-shot object detection network architectures, is coupled with machine-
driven design exploration to create a compact network with highly customized
module-level macroarchitecture and microarchitecture designs tailored for the task
of embedded object detection. The proposed YOLO Nano possesses a model size
of ∼4.0MB (>15.1× and >8.3× smaller than Tiny YOLOv2 and Tiny YOLOv3,
respectively) and requires 4.57B operations for inference (>34% and ∼17% lower
than Tiny YOLOv2 and Tiny YOLOv3, respectively) while still achieving an
mAP of ∼69.1% on the VOC 2007 dataset (∼12% and ∼10.7% higher than Tiny
YOLOv2 and Tiny YOLOv3, respectively). Experiments on inference speed and
power efficiency on a Jetson AGX Xavier embedded module at different power
budgets further demonstrate the efficacy of YOLO Nano for embedded scenarios.

1 Introduction
An active area in the field of computer vision is object detection, where the goal is to not only localize
objects of interest within a scene, but also assign a class label to each of these objects of interest.
Considerable recent successes in the area of object detection stems from modern advances in deep
learning [8, 7], particularly leveraging deep convolutional neural networks. Much of the initial focus
was on improving accuracy, leading to increasingly more complex object detection networks such as
SSD [11], R-CNN [2], Mask R-CNN [3], and other extended variants of these networks [6, 9, 18].
While such networks demonstrated state-of-the-art object detection performance, they were very
challenging, if not impossible, to deploy on edge and mobile devices due to computational and
memory constraints. In fact, even faster variants such as Faster R-CNN [15] have inference speeds at
low single-digit frame rates when running on embedded processors. This greatly limits the widespread
adoption of such networks for a wide range of applications such as unmanned aerial vehicles, video
surveillance, autonomous driving where local embedded processing is required.

To address this challenge of achieving embedded object detection, there has been a growing interest
in the exploration and design of highly efficient deep neural network architectures for object detection
that are more well-suited for edge and mobile devices [12, 13, 14, 23, 4, 17]. A particularly interesting
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family of object detection networks designed around efficiency is the YOLO family of neural
network architectures [12, 13, 14], which leverage a number of design principles to create single-shot
architectures which can achieve embedded object detection performance on high-end desktop GPUs.
However, these network architectures remain too large for many edge and mobile scenarios (e.g.,
∼240MB in the case of the YOLOv3 architecture), and their inference speeds drop considerably when
running on edge and mobile processors due to computational complexity (e.g., >65B operations in the
case of YOLOv3). To address this issue, Redmon et al. introduced the Tiny YOLO family of network
architectures, which has greatly reduced model sizes at a cost of object detection performance.

In this study, we are motivated to explore a human-machine collaborative design strategy to designing
highly compact deep convolutional neural networks for the task of object detection, where principled
network design prototyping is coupled with machine-driven design exploration. More specifically,
we leverage the design principles from the YOLO family of single-shot object detection network
architectures within this human-machine collaborative design strategy to create YOLO Nano, a highly
compact network with highly customized module-level macroarchitecture and microarchitecture
designs tailored for the task of embedded object detection.

2 Methods
In this study, we introduce YOLO Nano, a highly compact deep convolutional neural network for
embedded object detection designed using a human-machine collaborative design strategy [21]. The
human-machine collaborative design strategy for designing YOLO Nano comprises of two main
design stages: i) principled network design prototyping, and ii) machine-driven design exploration.
2.1 Principled network design prototyping
The first design stage in creating YOLO Nano is a principled network design prototyping stage,
where we create an initial network design prototype (denoted as ϕ), based on human-driven design
principles to guide the machine-driven design exploration stage. More specifically, we construct an
initial network design prototype based on the design principles of the YOLO family of single-shot
architecture [12, 13, 14]. A standout characteristic of the YOLO family of network architectures is
that, unlike region proposal-based networks which rely on the construction of a regional proposal
network to generate proposals for where objects lie in the scene followed by classification on the
generated proposals, they instead leverage a single network architecture to process the input image
and generate the output results. As such, all object detection predictions for a single image are made
in a single forward pass, compared to hundreds to thousands of passes that need to be performed to
get the final results for region proposal-based networks. This makes the YOLO family of network
architectures significantly faster to run, and thus better suited for embedded object detection.

The initial design prototype used in this study draws inspiration from the YOLO family of network
architectures and is comprised of a stack of feature representation modules, with shortcut connections
between the modules as with [14]. Also, as with [14], the feature representation modules are
configured in a way, similar to feature pyramid networks [10], such that it is capable of representing
features at three different scales. These feature representation modules are followed by several
convolutional layers, with output being a three-dimensional tensor that encodes bounding box,
objectness, and class predictions for three different scales. As a result, this initial design prototype
architecture design allows for efficient multi-scale object detection.

The actual macroarchitecture and microarchitecture designs of the individual modules and layers
in the final YOLO Nano network architecture, as well as the number of network modules, are left
for the machine-driven design exploration stage to determine automatically given data as well as
human-specified design requirements and constraints designed specifically around edge and mobile
scenarios with limited computational and memory capabilities.

2.2 Machine-driven design exploration
Using the initial network design prototype (ϕ), data, as well as human-specified design requirements
catered to edge and mobile usage as a guide, a machine-driven design exploration stage is then
leveraged to determine the module-level macroarchitecture and microarchitecture designs for the
proposed YOLO Nano network architecture. More specifically, machine-driven design exploration
is achieved in this study in the form of generative synthesis [22], which is capable of determining
the optimal macroarchitecture and microarchitecture designs of the final network architecture within
the human-specified requirements and constraints. The overall goal of generative synthesis is to
learn generative machines that can generate deep neural networks that meet design requirements and
constraints, and can be described as follows. This is formulated within the concept of generative
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Figure 1: YOLO Nano network architecture. Note that PEP(x) indicates x channels in the first
projection layer of a residual PEP module, and FCA(x) indicates reduction ratio of x

synthesis as a constrained optimization problem for determining a generator G that, given a set
of seeds S, can generate networks {Ns|s ∈ S} maximizing a universal performance function U
(e.g., [20]) while satisfying requirements and constraints defined via an indicator function 1r(·):

G = max
G
U(G(s)) subject to 1r(G(s)) = 1, ∀s ∈ S. (1)

Since it is computationally intractable to solve for the globally optimal solution in the constrained
optimization problem posed in Eq. 1 given the enormity of the feasible region, we instead solve for
an approximate solution Ĝ via iterative optimization, where the initial solution Ĝ0 is guided by ϕ, U ,
and 1r(·), and progressively updated such that each successive approximate solution Ĝk achieving
a higher U than previous approximate solutions (i.e., Ĝ1, . . ., Ĝk−1, etc.) while still constrained by
1r(·). The final approximate solution Ĝ is then used to create the proposed YOLO Nano network.

To guide the generative synthesis process towards learning generative machines that generate object
detection networks for edge and mobile scenarios that are not only highly efficient and compact but
also provide strong object detection performance, one of the key steps is to configure the indicator
function 1r(·) to enforce the appropriate design requirements and constraints. In this study, the
indicator function 1r(·) was set up such that: i) mean average precision (mAP) ≥ 65% on VOC
2007, ii) computational cost ≤ 5B operations, and iii) 8-bit weight precision. The computational cost
constraint is set such that the computational cost of the resulting YOLO Nano network is below that
of Tiny YOLOv3 [14], one of the most popular compact networks for embedded object detection.

3 YOLO Nano Architectural Design
The network architecture of the proposed YOLO Nano network for embedded object detection is
shown in Figure 1, with several interesting observations worth discussing below.
3.1 Residual Projection-Expansion-Projection Macroarchitecture
The first notable observation about the YOLO Nano network architecture that differs significantly
from the YOLO family of networks is that it is comprised of modules with unique residual projection-
expansion-projection (PEP) macroarchitectures, in addition to expansion-projection (EP) macroar-
chitectures like those found in [16, 19, 1]. The residual PEP macroarchitecture consists of: i) a
projection layer with 1×1 convolutions that projects output channels into an output tensor with lower
dimensionality ii) an expansion layer with 1×1 convolutions, that expands the number of channels to
a higher dimensionality, iii) a depth-wise convolution layer that performs spatial convolutions with
a different filter on each of the the individual output channels from the expansion layer, and iv) a
projection layer with 1×1 convolutions that projects output channels into an output tensor with lower
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dimensionality. The use of residual PEP macroarchitectures enables significant reductions in the
architectural and computational complexity while preserving model expressiveness.

3.2 Fully-connected Attention Macroarchitecture
The second notable observation about the YOLO Nano network architecture is the strategic introduc-
tion of light-weight fully-connected attention (FCA) within the network by the machine-driven design
exploration process, which is in contrast to fixed module-level introduction in other design exploration
methods [19]. As with [5], the FCA macroarchitecture consists of two fully-connected layers that
learn the dynamic, non-linear inter-dependencies between channels and produces modulation weights
for re-weight the channels via channel-wise multiplication. The use of FCA facilitates for dynamic
feature recalibration based on global information to pay more attention to informative features, thus
enabling better utilization of available network capacity. This in turn allows for a strong balance
between reduced architectural and computational complexity and model expressiveness.

3.3 Macroarchitecture and Microarchitecture Heterogeneity
The third notable observation about the YOLO Nano network architecture is that there is high hetero-
geneity in terms of not only macroarchitectures (a diverse mix of PEP modules, EP modules, FCA,
as well as individual 3×3 and 1×1 convolution layers), but also in terms of the microarchitectures of
the individual feature representation modules and layers, with each module or layer in the network
having unique microarchitectures. The benefit of having high microarchitecture heterogeneity in
the YOLO Nano network architecture is that it enables each component of the network architecture
to be uniquely tailored to achieve a very strong balance between architectural and computational
complexity and model expressiveness. This architectural diversity in YOLO Nano also demonstrates
the advantage of leveraging a machine-driven design exploration strategy as flexible as generative
synthesis as it would be impossible for a human designer, or other design exploration methods such
as [19, 1] to customize a network architecture to this level of architectural granularity.

4 Experimental Results and Discussion
To study the efficacy of YOLO Nano for embedded object detection, we examine its model size,
object detection accuracy, and computational cost on the PASCAL VOC datasets. For comparison
purposes, the Tiny YOLOv2 network [13] and the Tiny YOLOv3 network [14] were used as a
baseline references given that they are amongst the most popular compact deep neural networks for
embedded object detection given their small model sizes and low computational complexities. The
VOC2007/2012 datasets consist of natural images that have been annotated with 20 different types of
objects. The deep neural networks were trained using the VOC2007/2012 training datasets, and the
mean average precision (mAP) was computed on the VOC2007 test dataset to evaluate the object
detection accuracy of the deep neural networks, as is standard practice in research literature.

Table 1 shows the model sizes and the object detection accuracies of the proposed YOLO Nano
network as well as Tiny YOLOv2 and Tiny YOLOv3. First, it was observed that the model size
of YOLO Nano was 4.0MB, which is >15.1× and >8.3× smaller than Tiny YOLOv2 and Tiny
YOLOv3, respectively, which is very important for edge and mobile scenarios given the memory
constraints. Second, YOLO Nano, despite being much smaller in model size, achieved an mAP of
69.1% on the VOC 2007 test dataset, which is ∼12% and ∼10.7% higher than that of Tiny YOLOv2
and Tiny YOLOv3, respectively. Third, YOLO Nano requires just 4.57 billion operations to perform
inference, which is >34% lower than Tiny YOLOv2 and ∼17% lower than Tiny YOLOv3.

Table 1: Object detection accuracy results of tested compact networks on VOC 2007 test set. Input
size is 416×416 for all tested networks. Best results are highlighted in bold.

Model Model mAP computational cost
Name size (VOC 2007) (ops)

Tiny YOLOv2 [13] 60.5MB 57.1% 6.97B
Tiny YOLOv3 [14] 33.4MB 58.4% 5.52B

YOLO Nano 4.0MB 69.1% 4.57B

Finally, to investigate the real-world performance of YOLO Nano within an embedded scenario,
we evaluated the inference speed and power efficiency of YOLO Nano running on a Jetson AGX
Xavier embedded module at different power budgets. At 15W and 30W power budgets, YOLO Nano
achieved inference speeds of ∼26.9 FPS and ∼48.2 FPS, respectively, resulting in power efficiencies
of ∼1.97 images/sec/watt and ∼1.61 images/sec/watt, respectively. These experimental results show
that the proposed YOLO Nano network, created through a human-machine collaborative design
strategy, provides a strong balance between accuracy, size, and computational complexity that makes
it well suited for embedded object detection for edge and mobile scenarios.
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