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Quantization have afforded models that enable memory-efficient low-power inference. We present a comparison of data-free
quantization schemes (i.e. asymmetric, symmetric, logarithmic) to explore limits below 8-bit precision. To better analyze quantization
results, we describe the overall range and local sparsity of values afforded through various quantization schemes. We show the methods
to lower bit-precision beyond quantization limits with object class clustering. We also highlight the connection of model architecture to
quantization schemes.
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» Quantization to very low precision (4-bits) creates biased-Inference; Significance —
Model parameters are quantization friendly if distributions of classes in training
dataset are orthogonal in nature. Model Architecture Agnostic

» Creating non-overlapping Hierarchical Class-Distributions helps in pushing the
quantization limits of the model (i.e. Cat/Dog -> Pet )

Compression numbers using GZip and 7zip

» We also observe that the
quantization effect is model |-
architecture agnostic. 8o
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Hierarchical Grouping
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Quantization effects on model inference of Resnet18 at 4-bits
Conclusion And Future Work

* Quantized performance is closely tied to the dataset distribution. For classification tasks, the hierarchical grouping of overlapping class distribution gives lesser
degradation on inference at lower bit precision. For regression tasks, it is still a challenge to regress to coordinates with lesser precision.

 Quantization effects can be independent of the model architecture, e.g. for common feed forward convolution networks. We observed that quantizing initial
layers affects model performance the most, suggesting (1) the need to preserve initial learned features, and (2) better returns with quantization of semantic
layers.
* Using the framework built we are able to deploy models to general purpose processors, however work still remains in targeting hardware constraints for
optimized low-precision operations for taking the full benefit of quantization schemes.
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