
POSTER CONTACTS:

Monte Carlo methods are ubiquitous in neural networks [1]:

dropout, weight noise regularization, weight normalization,

pruning/sparsification, initialization, etc. all rely on random

sampling. In fact, various pruning techniques may be

considered special cases of importance sampling [2].

Normalizing the weights of a neuron, they form a probability

distribution function of the connections to the next layer:

Biases and incoming weights for neuron j in layer l may then

be normalized by

Effectively, a neuron integrates its inputs and hence may be

approximated using stochastic sampling. Drawing N samples

according to the above probability distribution function and

considering the sign of the weight, we approximate

which in the limit converges to the true value. By varying

the number of samples, sparsity and computational cost can

be traded for accuracy. Various sampling techniques may be

used to improve the approximation (jittered sampling,

sorting, …).

Tracing paths through a network yields a linear-complexity,

sparse network with guaranteed connectivity [4]:

The same technique can be used to construct sparse

networks from scratch. The connectivity may be optimized

for memory accesses in hardware accelerators [1,3].

Quantizing neural network weights and activations to low

bit-width integers enables higher efficiency, especially with

respect to power consumption.

Importance sampling can be used to generate a lower-

complexity version of a neural network by quantizing

weights and/or activations, with no modification to the

training procedure.

Importance sampling automatically results in a sparse,

quantized network, where the complexity is proportional to

the number of samples taken. We use jittered equidistant

sampling to improve the quality of the approximation.

Monte Carlo quantization applies the following steps layer-

by-layer:

1. Create a probability density function (PDF) for all Nl,w

weights of layer l such that

2. Perform importance sampling on the weights by sampling

from the cumulative density function (CDF) of the

magnitudes of the weights, and counting the number of

hits per weight

3. The hit count corresponds to a low bit-width, integer

representation of the weight

The same procedure can be applied to quantize activations.

References

Gonçalo Mordido (HPI), Matthijs Van keirsbilck (NVIDIA), Alexander Keller (NVIDIA)

goncalo.mordido@hpi.de, matthijsv@nvidia.com

Instant Quantization of Neural Networks using Monte Carlo Methods

Subsampling Networks Monte Carlo Quantization Results

The figure below shows the accuracy on ImageNet for

models with quantized weights and activations, where the

number of samples is varied. The red lines show accuracy

for full precision and quantized models. The blue and green

lines show the number of bits and the density respectively,

for weights (solid line) and activations (dashed line).

With just 5 binary samples per weight we reach within 0.2%

of full precision (32-bit) accuracy, and 1.2% if activations

are quantized as well. We require about 8 bits for storing

the largest weights and activations.

MCQ also performs well in various Natural Language

Processing tasks, illustrating its general applicability.

Linking Monte Carlo Methods and Neural Networks

[1] Keller, Van keirsbilck, Yang. (2019): GTC S9389: “Structural Sparsity: Speeding

up training and inference of neural networks by linear algorithms

[2] Molchanov et al. (2017): Pruning Convolutional Neural Networks for Resource

Efficient Inference

[3] Dey et al. (2017): Interleaver Design for Deep Neural Networks

[4] Gamboa, Keller (2018): GTC S8780: “Monte Carlo Methods and Neural Networks”

[5] Zhao et al. (2019): Improving Neural Network Quantization without Retraining

using Outlier Channel Splitting

The 5th Workshop on Energy Efficient Machine Learning and Cognitive Computing @ NeurIPS 2019

mailto:goncalo.mordido@hpi.de
mailto:matthijsv@nvidia.com

