Instant Quantization of Neural Networks using Monte Carlo Methods

HPI Hasso Plattner Institut

Subsampling Netwo

Monte Carlo methods are ubiquitous in neural ne dropout, weight noise regularization, weight nor pruning/sparsification, initialization, etc. all rely sampling. In fact, various pruning technique considered special cases of importance sampling Normalizing the weights of a neuron, they form a distribution function of the connections to the next

$$0 = \frac{|w_1|}{P_0} \quad |w_2| \qquad |w_{n-1}| \\ P_2 \quad P_{n-2} \quad P_{n-1} = 1$$

Biases and incoming weights for neuron j in layer be normalized by $N_{1-1} = 1$

$$f = \|\mathbf{w}_{l-1,j}\|_1 = \sum_{i=0}^{N_{l-1}-1} |w_{l-1,i,j}|$$

Effectively, a neuron integrates its inputs and her approximated using stochastic sampling. Drawing according to the above probability distribution fu considering the sign of the weight, we approximate

$$\sum_{j=0}^{n-1} w_j a_j \approx \frac{1}{N \cdot f} \sum_{i=0}^{N-1} \underbrace{\operatorname{sign}(w_{j_i})}_{\in \{-1,1\}} \times a_{j_i},$$

which in the limit converges to the true value. the number of samples, sparsity and computation be traded for accuracy. Various sampling technique used to improve the approximation (jittered sorting, ...).

Tracing paths through a network yields a linearsparse network with guaranteed connectivity [4]:

The same technique can be used to constr networks from scratch. The connectivity may be for memory accesses in hardware accelerators [1]

Gonçalo Mordido (HPI), Matthijs Van keirsbilck (NVIDIA), Alexander Keller (NVIDIA)

Linking Monte Carlo Methods and Neural Networks

orks	Monte Carlo Quanti	Z
etworks [1]: rmalization, / on random es may be [2]. a probability	Quantizing neural network weights and active bit-width integers enables higher efficiency, en- respect to power consumption. Importance sampling can be used to gener complexity version of a neural network to weights and/or activations, with no modified training procedure	rat sp rat ca
= 1 r l may then	Importance sampling automatically results quantized network, where the complexity is p the number of samples taken. We use jittere sampling to improve the quality of the approxim	in ro ed ma
ence may be g N samples function and ate	 Monte Carlo quantization applies the following by-layer: 1. Create a probability density function (PDF weights of layer l such that \$\sum_{i=0}^{N_{l,w}-1} w_{l,i} = \$	g F) ts (C he
By varying nal cost can ues may be sampling, $\operatorname{complexity}_{A_{L,0}}$	representation of the weight The same procedure can be applied to quantize 2.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.14	eię
⊙ a _{L,2}	(a) Full-precision weights (b)	P
: $a_{L,n_{L}-1}$ ruct sparse e optimized ,3].	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 eig
	(c) sampling on CDF (d) intege	er

The 5th Workshop on Energy Efficient Machine Learning and Cognitive Computing @ NeurIPS 2019

CISION Δ MCQ (quantized W)	nd mac	thine translation (MT).
	CISION	Δ MCQ (quantized W)

	+0.21 (8.21W-32A)
5	+0.51 (7.17W-32A)
	+0.09 (7.26w-32A)
3	-0.23 (7.71W-32A)