Discovering Low-Precision Networks Close to Full-Precision Networks for Efficient Inference

Jeffrey L. McKinstry^{*}, Steven K. Esser, Rathinakumar Appuswamy, Deepika Bablani, John V. Arthur, Izzet B. Yildiz & Dharmendra S. Modha IBM Almaden Research Center, San Jose

Network Quantization Problem

Pretrained, high-precision networks must be prepared to run on low precision hardware for low cost/energy efficient inference (8 or 4-bits for weights and activations)

- -Quantize weights (uniform)
- -Quantize activations (uniform)
- -Finetune to improve score

- 8-bit networks: accuracy is typically lower then full precision scores when just quantizing (Migacz, 2017), or when training from scratch (Jacob et al., 2017)
- 4-bit networks: only 1 method had been shown to match full precision accuracy by combining several finetuning techniques (ResNet-50 net on imagenet) (Zhuang et al., 2018)
- Are complex training techniques required? Do 4-bits suffice for classification for other networks?

Proposed solution

- Train model with low precision quantization in forward pass (Courbariaux et al, 2015)
- Hypothesis: noise due to quantization (Polino et al. 2018) hinders low precision training

SGD requires

$$k \le (\sigma^2 + L * ||x_0 - x^*||_2^2)^2 / \epsilon^2$$

iterations to find a 2ϵ -approximate optimal value, where σ is the gradient noise level, L relates to curvature, x_0 and x^* are initial and optimal network parameters, ϵ is error tolerance

Suggests that to overcome noise due to quantization:

- -Finetune to start closer to solution (Zhou et al., 2017)
- -Learning rate annealing to lower learning rates (10⁻⁶) to average over more batches (Smith et al., 2017)
- -Finetune longer: 110 epochs to achieve better accuracy
- In addition, use empirically optimal quantization step size for both weights and activations that is a function of the precision.
- Finetuning after Quantization: FAQ

FAQ: Methods

- Uniform quantization of weights and activations with quantization bin width, Δ, a power of 2 (fixed point representation)
- Weight quantization for 4-bits: $\Delta = \left[\frac{4.12\sigma^l}{8}\right]$

where $[x[=2^{\lceil log_2(x) \rceil}]$, and σ^l is the standard deviation of the weights for layer *l*. Weights outside range are clipped during training.

• Activation quantization for 4-bits: $\Delta = [y_{max}/16[$

where $[x[=2^{\lceil log_2(x) \rceil}]$, and y_{max} is the maximum 99.9th percentile of activations for layer *l* among 5 calibration batches from training set. Activations outside range are clipped during training.

Training

- -Imagenet dataset
- -SGD with momentum (PyTorch)
- -4 bit networks use 110 epochs, learning rate 0.0015 with an exponential decay to a final value of 10⁻⁶, 1st and last layers are 8-bits
- -Batch size: 256

FAQ Results on Imagenet classification benchmark

- 8-bit nets exceed full-precision accuracy in 1 epoch on Imagenet
- 4-bit nets match original full precision net accuracy for a wide range of networks in PyTorch model zoo
- 4-bit solutions are close to the full-precision solution

-Mean cosine similarity 0.994

Network	Method	Precision (w,a)	Accuracy	Accuracy	
			(% top-1)	(% top-5)	
ResNet-18	baseline	32,32	69.76	89.08	
ResNet-18	Apprentice	4,8	70.40	-	
ResNet-18	FAQ (This paper)	8,8 70.02		89.32	
ResNet-18	FAQ (This paper)	4,4	69.78±0.04	89.11±0.03	
ResNet-18	Joint Training	4,4	69.3	-	
ResNet-18	UNIQ	4,8	67.02	-	
ResNet-18	Distillation	4,32	64.20	-	
ResNet-34	baseline	32,32	73.30	91.42	
ResNet-34	FAQ (This paper)	8,8	73.71	91.63	
ResNet-34	FAQ (This paper)	4,4	73.31	91.32	
ResNet-34	UNIQ	4,32	73.1	-	
ResNet-34	Apprentice	4,8	73.1	-	
ResNet-34	UNIQ	4,8	71.09	-	
ResNet-50	baseline	32,32	76.15	92.87	
ResNet-50	FAQ (This paper)	8,8	76.52	93.09	
ResNet-50	FAQ (This paper)	4,4	76.27	92.89	
ResNet-50	EL-Net	4,4	75.9	92.4	
ResNet-50	IOA	8,8	74.9	-	
ResNet-50	Apprentice	4,8	74.7	-	
ResNet-50	UNIQ	4,8	73.37	-	
ResNet-152	baseline	32,32	78.31	94.06	
ResNet-152	FAQ (This paper)	4,4	78.64	94.12	
ResNet-152	FAQ (This paper)	8,8	78.54	94.07	
Inception-v3	baseline	32,32	77.45	93.56	
Inception-v3	FAQ (This paper)	8,8	77.60	93.59	
Inception-v3	FAQ (This paper)	4,4	77.33	93.59	
Inception-v3	IOA	8,8	74.2	92.2	
Densenet-161	baseline	32,32	77.65	93.80	
Densenet-161	FAQ (This paper)	4,4	77.90	93.83	
Densenet-161	FAQ (This paper)	8,8	77.84	93.91	
VGG-16bn	baseline	32,32	73.36	91.50	
VGG-16bn	FAQ (This paper)	4,4	73.87	91.67	
VGG-16bn	FAQ (This paper)	8,8	73.66	91.56	

Copyright ©2019 IBM Corporation

Conclusion

Ablation study on ResNet-18 indicates that longer training, finetuning, and proper activation stepsize calibration were essential

Epochs	Pre- trained	Batch size	Learning rate	Weight decay	Activation calibration	Accuracy (% top-1)	Change
			schedule				
110	Yes	256	exp.	0.00005	Yes	69.82	-
60	Yes	400	exp.	0.00005	Yes	69.40	-0.22 *
110	No	256	exp.	0.00005	Yes	69.24	-0.58 *
165*	Yes	256-2048	exp.	0.00005	Yes	69.96	+0.14
110	Yes	256	step	0.00005	Yes	69.90	+0.08
110	Yes	256	exp.	0.0001	Yes	69.59	-0.23
110	Yes	256	exp.	0.00005	No	69.19	-0.63 *

 Results provide empirical evidence that 4-bits suffice for classification – simply Finetune After Quantization (FAQ)

We are hiring