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Motivation

Dataflow processing is widely exploited to amortize memory access energy

Datapath energy becomes important for dataflow accelerators

« Consist of compute energy in process elements (PEs) and data propagation energy among PEs
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Motivation

In dataflow processing, operands are streamed into the compute array
Datapath energy is determined by the total bit flips induced by operand streaming

Target: propose post-training and training-aware techniques to reduce bit flips of weight
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K, C, H, W denotes output channel, input channel, output height, and output width, respectively




Post-Training Optimization: Output Channel Reordering

To reduce bit flips, the most straight-forward technique is output channel reordering

e Qutput channel reordering can be mapped to a traveling salesman problem, which can be
approximately solved with efficient greedy algorithms
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Post-Training Optimization: Input Channel Clustering

For most networks, the channel dimension can be larger than the compute array size
Weight matrices need to be segmented first and then fed into compute array

* Each weight sub-matrix can use different output channel orders

* Before segmenting the weight matrix, different input channels can be clustered first

Propose an iterative assignment and update approach for input clustering
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Experimental Results

Post-training optimization technique comparison

Use 1x1 Conv in MobileNetV2 and 3x3 Conv in ResNet26 for evaluation
Combine post-training and training-aware optimization

Incorporate bit flip loss into the loss function
Use MobileNetV2 trained on Cifar100 for evaluation
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