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1986-1996 Neural Net Hardware at Bell Labs, Holmdel

1986: 12x12 resistor array
Fixed resistor values

E-beam lithography: 6x6microns

1988: 54x54 neural net
Programmable ternary weights

On-chip amplifiers and I/O

1991: Net32k: 256x128 net
Programmable ternary weights

320GOPS, 1-bit convolver.

1992: ANNA: 64x64 net
ConvNet accelerator: 4GOPS

6-bit weights, 3-bit activations

6 microns
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LeNet character recognition demo 1992

Running on an AT&T DSP32C (floating-point DSP, 20 MFLOPS)
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FPGA ConvNet Accelerator: NewFlow [Farabet 2011]

NeuFlow: Reconfigurable Dataflow architecture
Implemented on Xilinx Virtex6 FPGA

20 configurable tiles. 150GOPS, 10 Watts

Semantic Segmentation: 20 frames/sec at 320x240

Exploits the structure of convolutions

NeuFlow ASIC [Pham 2012] 
150GOPS, 0.5 Watts (simulated)
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Semantic Segmentation with ConvNets [Farabet 2012]
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Lessons learned #1

1.1: It’s hard to succeed with exotic hardware 
Hardwired analog → programmable hybrid → digital

1.2: Hardware limitations influence research directions
It constrains what algorithm designers will let themselves imagine

1.3: Good software tools shape research and give superpowers
But require a significant investment

Common tools for Research and Development facilitates productization

1.4: Hardware performance matters
Fast turn-around is important for R&D

But high-end production models always take 2-3 weeks to train

1.5: When hardware is too slow, software is not readily available, or 
experiments are not easily reproducible, good ideas can be abandoned.
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Lessons learned #2

2.1: Good results are not enough 
Making them easily reproducible also makes them credible.

2.2: Hardware progress enables new breakthroughs
General-Purpose GPUs should have come 10 years earlier!

But can we please have hardware that doesn’t require batching?

2.3: Open-source software platforms disseminate ideas
But making platforms that are good for research and production is hard.

2.4: Convolutional Nets will soon be everywhere
Hardware should exploit the properties of convolutions better

There is a need for low-cost, low-power ConvNet accelerators

Cars, cameras, vacuum cleaners, lawn mowers, toys, maintenance robots...




Y. LeCun

What will be the killer app of embedded DL hardware?

AR glasses!
Yes, Facebook is working on AR glasses

Yes, obviously, Facebook is working on DL hardware for AR glasses

DL-based functions in AR glasses:
Position tracking / SLAM / 3D reconstruction

hand pose tracking, gesture recognition

Recognition: landmarks, products, faces, plants, birds, insects...

OCR, ASR, TTS

Translation (from speech and OCR’ed text)

…

All of this on a tiny device that needs to run all day.
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Supervised Learning works (but requires many labeled samples)

Training a machine by showing examples instead of programming it
When the output is wrong, tweak the parameters of the machine 

PLANE

CAR

Works well for:
Speech→words

Image→categories

Portrait→ name

Photo→caption

Text→topic

….
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Detectron2

Panoptic instance segmentation, (dense) body pose estimation
Open source: https://github.com/facebookresearch/detectron2    
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Reinforcement Learning: works great for games and simulations.

57 Atari games: takes 83 hours 
equivalent real-time (18 million 
frames) to reach a performance that 
humans reach in 15 minutes of play.
[Hessel ArXiv:1710.02298]

Elf OpenGo v2: 20 million self-play 
games. (2000 GPU for 14 days)
[Tian arXiv:1902.04522] 

StarCraft: AlphaStar 200 years of 
equivalent real-time play
[Vinyals blog post 2019]

OpenAI single-handed Rubik’s cube
10,000 years of simulation
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But RL Requires too many trials in the real world

Pure RL requires too many 
trials to learn anything
it’s OK in a game

it’s not OK in the real world

RL works in simple virtual 
world that you can run faster 
than real-time on many 
machines in parallel.

Anything you do in the real world can kill you

You can’t run the real world faster than real time



New Deep Learning
Architectures

Attention, 
Dynamic architectures, 
hyper networks.
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Memory-Augmented Networks

Recurrent net memory

 Recurrent networks cannot remember things for very long
The cortex only remember things for 20 seconds

 We need a “hippocampus” (a separate memory module)
LSTM [Hochreiter 1997], registers

Memory networks [Weston et 2014] (FAIR), associative memory

Stacked-Augmented Recurrent Neural Net [Joulin & Mikolov 2014] (FAIR)

Neural Turing Machine [Graves 2014], 

Differentiable Neural Computer [Graves 2016]
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Differentiable Associative Memory == “soft RAM”

Used very widely in NLP

MemNN, Transformer Network, ELMO, 
GPT, BERT, GPT2, GloMO, RoBERTa...

Essentially a “soft” RAM or hash table

Input (Address) X

Keys Ki

Values Vi

Dot Products

Softmax

Sum

Y=∑
i

CiV i

Ci=
eK i

T X

∑
j

eK j
T X
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All-Attention Circuit with persistent memory

[Sukhbaatar arXiv:1907.01470 ]



Y. LeCun

Learning to synthesize neural programs for visual reasoning

https://research.fb.com/visual-reasoning-and-dialog-towards-natural-language-conversations-about-visual-data/
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Networks produced by other networks

2D image to 3D model [Ltitwin & Wolf arXiv:1908.06277]
Net1 → weights of Net2: implicit function for 3D shape



Y. LeCun

ConvNets on Graphs (fixed and data-dependent)

Graphs can represent: Natural 
language, social networks, chemistry, 
physics, communication networks...

Review paper: “Geometric deep learning: going 
beyond euclidean data”, MM Bronstein, J Bruna, Y 
LeCun, A Szlam, P Vandergheynst, IEEE Signal 
Processing Magazine 34 (4), 18-42, 2017 
[ArXiv:1611.08097]
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Spectral ConvNets / Graph ConvNets

Regular grid graph
Standard ConvNet

Fixed irregular graph
Spectral ConvNet

Dynamic irregular graph
Graph ConvNet

IPAM workshop:
http://www.ipam.ucla.edu/programs/workshops/new-deep-learning-techniques/
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Sparse ConvNets: for sparse voxel-based 3D data

ShapeNet competition results ArXiv:1710.06104]
Winner:  Submanifold Sparse ConvNet
[Graham & van der Maaten arXiv 1706.01307]
PyTorch: https://github.com/facebookresearch/SparseConvNet
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Lessons learned #3

3.1: Dynamic networks are gaining in popularity (e.g. for NLP)
Dynamicity breaks many assumptions of current hardware

Can’t optimize the compute graph distribution at compile time.

Can’t do batching easily!

3.2: Large-Scale Memory-Augmented Networks...
...Will require efficient associative memory/nearest-neighbor search

3.3: Graph ConvNets are very promising for many applications
Say goodbye to matrix multiplications? 

Say goodbye to tensors?

3.4: Large Neural Nets may have sparse activity
How to exploit sparsity in hardware?

http://www.ipam.ucla.edu/programs/workshops/new-deep-learning-techniques/


How do humans 
and animals 
learn so quickly?

Not supervised. 
Not Reinforced.



Y. LeCun

Babies learn how the world works by observation 

Largely by observation, with remarkably little interaction.

Photos courtesy of 
Emmanuel Dupoux
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Early Conceptual Acquisition in Infants [from Emmanuel Dupoux]
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Self-Supervised
Learning

Predict everything 
from everything else
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Self-Supervised Learning = Filling in the Blanks

Predict any part of the input from any 
other part.

Predict the future from the past.

Predict the masked from the visible.

Predict the any occluded part from all 
available parts.

time or space → 

Pretend there is a part of the input you don’t know and predict that.
Reconstruction = SSL when any part could be known or unknown
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Self-Supervised Learning: filling in the bl_nks

Natural Language Processing: works great!

INPUT:     This is a […...] of text extracted […..] a large set of [……] articles

OUTPUT: This is a piece of text extracted from a large set of news articles

Encoder

Decoder

CODE

Image Recognition / Understanding: works so-so               [Pathak et al 2014] 

Encoder Decoder
CODE
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Learning Representations through Pretext SSL Tasks

Text / symbol sequences  (discrete, works great!)
Future word(s) prediction (NLM)

Masked words prediction (BERT et al.)

Image (continuous)
Inpainting, colorization, super-resolution

Video (continuous)
Future frame(s) prediction

Masked frames prediction

Signal / Audio (continuous)
Restoration

Future prediction
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Self-Supervised Learning works very well for text

Word2vec
[Mikolov 2013]

FastText
[Joulin 2016] (FAIR)

BERT
Bidirectional Encoder 
Representations from 
Transformers

[Devlin 2018]

Cloze-Driven Auto-Encoder
[Baevski 2019] (FAIR)

RoBERTa [Ott 2019] (FAIR)

Figure credit: Jay Alammar http://jalammar.github.io/illustrated-bert/
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SSL works less well for images and video
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Learning World Models for Autonomous AI Agents

Learning forward models for control
s[t+1] = g( s[t], a[t], z[t])

Model-predictive control, model-predictive policy learning, model-based RL

Robotics, games, dialog, HCI, etc
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Three Types of Learning

Reinforcement Learning
The machine predicts a scalar reward given once in a 
while.

weak feedback

Supervised Learning
The machine predicts a category or a few numbers for 
each input

medium feedback

Self-supervised Learning
The machine predicts any part of its input for any 
observed part.

Predicts future frames in videos

A lot of feedback

PLANE

CAR
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How Much Information is the Machine Given during Learning?

“Pure” Reinforcement Learning (cherry)
The machine predicts a scalar reward given once in a 
while.

A few bits for some samples

Supervised Learning (icing)
The machine predicts a category or a few numbers for 
each input

Predicting human-supplied data

10→10,000 bits per sample

Self-Supervised Learning (cake génoise)
The machine predicts any part of its input for any 
observed part.

Predicts future frames in videos

Millions of bits per sample
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The Next AI Revolution

              THE REVOLUTION THE REVOLUTION 
WILL NOT BE SUPERVISEDWILL NOT BE SUPERVISED
          (nor purely reinforced)(nor purely reinforced)

With thanks to Alyosha Efros 

and Gil Scott Heron

Get the T-shirt!

Jitendra Malik: “Labels are the opium of the machine learning researcher”



Energy-Based 
Models

Learning to deal with 
uncertainty while eschewing 
probabilities



Problem: uncertainty!

There are many plausible words that 
complete a text.

There are infinitely many plausible 
frames to complete a video.

Deterministic predictors don’t work!

How to deal with uncertainty in the 
prediction?

  G(x)

y

x y

C(y,y)

E( x , y )=C ( y ,G( x))

Distance
measure

Prediction

Predictor
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The world is not entirely predictable / stochastic

Video prediction:
A deterministic predictor with L2 
distance will predict the average of all 
plausible futures.

Blurry prediction!
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Energy-Based Model

Scalar-valued energy function: F(x,y)
measures the compatibility between x and y

Low energy: y is good prediction from x

High energy: y is bad prediction from x

Inference:

Energy
Function

x

F(x,y)

y x

y

Dark = low energy (good)
Bright = high energy (bad)
Purple = data manifold

y̌=argmin y F( x , y )

[Figure from M-A Ranzato’s PhD thesis]
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Energy-Based Model: unconditional version

Scalar-valued energy function: F(y)
measures the compatibility between the 
components of y

If we don’t know in advance which part of 
y is known and which part is unknown

Example: auto-encoders, generative 
models (energy = -log likelihood)

Energy
FunctionF(y)

y y1

y2

Dark = low energy (good)
Bright = high energy (bad)
Purple = data manifold
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Training an Energy-Based Model

Parameterize F(x,y)
Get training data (x[i], y[i])
Shape F(x,y) so that:
F(x[i], y[i]) is strictly smaller than F(x[i], y) for 
all y different from y[i]

F is smooth (probabilistic methods break that!)

Two classes of learning methods:
1. Contrastive methods: push down on 
F(x[i], y[i]), push up on other points F(x[i], y’)

2. Architectural Methods: build F(x,y) so that 
the volume of low energy regions is limited or 
minimized through regularization 

Energy
Function

x

F(x,y)

y
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Seven Strategies to Shape the Energy Function

Contrastive: [they all are different ways to pick which points to push up]
C1: push down of the energy of data points, push up everywhere else: Max likelihood (needs 
tractable partition function or variational approximation)

C2: push down of the energy of data points, push up on chosen locations: max likelihood with 
MC/MMC/HMC, Contrastive divergence, Metric learning, Ratio Matching, Noise Contrastive 
Estimation, Min Probability Flow, adversarial generator/GANs

C3: train a function that maps points off the data manifold to points on the data manifold: 
denoising auto-encoder, masked auto-encoder (e.g. BERT)

 Architectural: [they all are different ways to limit the information capacity of the code]
A1: build the machine so that the volume of low energy stuff is bounded: PCA, K-means, 
Gaussian Mixture Model, Square ICA…

A2: use a regularization term that measures the volume of space that has low energy: Sparse 
coding, sparse auto-encoder, LISTA, Variational auto-encoders

A3: F(x,y) = C(y, G(x,y)), make G(x,y) as "constant" as possible with respect to y: Contracting 
auto-encoder, saturating auto-encoder

A4: minimize the gradient and maximize the curvature around data points: score matching
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Simple examples: PCA and K-means

 Limit the capacity of z so that the volume of low energy stuff is bounded
PCA, K-means, GMM, square ICA...

F (Y )=‖W TWY−Y‖
2

PCA: z is low dimensional
K-Means,  
Z constrained to 1-of-K code
F (Y )=minz∑i

‖Y−W i Z i‖
2
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Latent-Variable EBM

Allowing multiple predictions through a latent variable

Conditional:

Unconditional

x

z

y

F (x , y )=minz E(x , y , z )

z

y

F ( y )=minz E ( y , z)

F ( y )=−
1
β
log [∫

z

exp(−βE ( y , z))]

F (x , y )=−
1
β
log [∫

z

exp (−β E(x , y , z))]

E(x,y,z)

E(y,z)
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Latent-Variable EBM for multimodal prediction

Allowing multiple predictions 
through a latent variable

As z varies over a set, y varies over 
the manifold of possible 
predictions

Examples:
K-means

Sparse modeling

GLO 

[Bojanowski arXiv:1707.05776 ] 

y

x

z

y

h

C(y,y)

Pred(x)

Dec(z,h)

F (x , y )=minz E(x , y , z )
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Latent-Variable EBM example: K-means

Decoder is linear, z is a 1-hot vector (discrete)

Energy function:

Inference by exhaustive search

Volume of low-energy
regions limited by
number of prototypes k

y

z

y

   Wz

||y-y||2min
z

E( y , z )=‖y−Wz‖2 z∈1hot

F ( y )=min z E ( y , z)

y1

y2



Contrastive Embedding

Distance measured in feature space
Multiple “predictions” through feature invariance 
Siamese nets, metric learning [YLC NIPS’93,CVPR’05,CVPR’06]

Advantage: no pixel-level reconstruction
Difficulty: hard negative mining
Successful examples for images: 
DeepFace [Taigman et al. CVPR’14] 

PIRL [Misra et al. To appear]

MoCo [He et al. Arxiv:1911.05722]

Video / Audio
Temporal proximity [Taylor CVPR’11]

Slow feature [Goroshin NIPS’15]

Pred(x)

x y

h

C(h,h’)

Pred(y)

h’

Positive pair:
Make F small

Negative pair:
Make F large
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MoCo on ImageNet [He et al. Arxiv:1911.05722] 



Denoising AE: discrete

[Vincent et al. JMLR 2008]

Masked Auto-Encoder
[BERT et al.]

Issues: 
latent variables are in 
output space

No abstract LV to control 
the output

How to cover the space of 
corruptions?

y

x

z

y

h

C(y,y)

   Dec(h)

 Softmax

 Switches

   Pred(x)

corruption

Latent variable turns
Softmax vector(s) into
Observed word(s)

This is a [...] of text extracted 
[...] a large set of [...] articles

This is a piece of text extracted 
from a large set of news articles
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Prediction with Latent Variables

If the Latent has too much capacity...
e.g. if it has the same dimension as y

 … then the entire y space could be perfectly 
reconstructed

For every y, there is always a z that will 
reconstruct it perfectly
The energy function would be zero everywhere

This is no a good model….

Solution: limiting the information capacity of 
the latent variable z.

Pred(x)

y

x y

Dec(z,h)

h

C(y,y)

z

E( x , y , z)=C ( y , Dec(Pred (x ), z ))
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Regularized Latent Variable EBM

Regularizer R(z) limits the information capacity of z
Without regularization, every y may be reconstructed 
exactly (flat energy surface)

Examples of R(z):
Effective dimension

Quantization / discretization

L0 norm (# of non-0 components)

L1 norm with decoder normalization

Maximize lateral inhibition / competition

Add noise to z while limiting its L2 norm (VAE)

<your_information_throttling_method_goes_here>

Pred(x)

y

x y

Dec(z,h)

h

C(y,y)

z

 R(z)

E( x , y , z)=C ( y , Dec(Pred (x ), z ))+λ R (z)
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Unconditional Regularized Latent Variable EBM

Unconditional form. Reconstruction. No x, no predictor.
Example: sparse modeling
Linear decoder

L1 regularizer on Z

y

z

y

  Dec(z)

C(y,y)

 R(z)

min
z

y

z

y

   Wz

||y-y||2

|z|
L1

min
z

E( y , z )=‖y−Wz‖2+λ|z|



LatVar inference is expensive!

Let’s train an encoder to predict the latent variable

Predictive Sparse Modeling
R(z) = L1 norm of z

Dec(z,h) gain must be bounded (clipped weights)

Sparse Auto-Encoder

LISTA [Gregor ICML 2010] 
Pred(x)

y

x y

Dec(z,h)

h

C(y,y)

z R(z)

Enc(y,h)

D(z,z)

z

E( x , y , z)=C ( y , Dec(z , h))+D(z , Enc (x , y ))+λ R (z )

y
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Sparse AE on handwritten digits (MNIST)

256 basis functionsBasis functions (columns of decoder matrix) 
are digit parts
All digits are a linear combination of a small number of these
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Predictive Sparse Decomposition (PSD): Training

Training on natural 
images patches. 
12X12

256 basis functions

[Ranzato 2007]
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Convolutional Sparse Auto-Encoder on Natural Images

Encoder Filters Decoder Filters Encoder Filters Decoder Filters

Filters and Basis Functions obtained. Linear decoder (conv) 
with 1, 2, 4, 8, 16, 32, and 64 filters [Kavukcuoglu NIPS 2010]
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Convolutional Sparse Auto-Encoder on Natural Images

Trained on CIFAR 10 (32x32 color images)
Architecture: Linear decoder, LISTA recurrent encoder

sparse codes (z) from encoder               9x9 decoder kernels



Learning a 
Forward Model for 
Autonomous Driving

Learning to predict what 
others around you will do
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A Forward Model of the World

Learning forward models for control
s[t+1] = g( s[t], a[t], z[t])

Classical optimal control: find a sequence of action that minimize the cost, 
according to the predictions of the forward model
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Planning/learning using a self-supervised predictive world model

Feed initial state
Run the forward 
model 
Backpropagate 
gradient of cost 
Act 
(model-predictive 
control)

or

Use the gradient to 
train a policy network.
Iterate
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Using Forward Models to Plan (and to learn to drive)

Overhead camera on 
highway.
Vehicles are tracked

A “state” is a pixel 
representation of a 
rectangular window 
centered around each 
car.
Forward model is 
trained to predict how 
every car moves relative 
to the central car. 
steering and acceleration 
are computed



Video Prediction: inference

After training:
Observe frames

Compute h

Sample z

Predict next frame

Pred(x)

y

y

Dec(z,h)

C(y,y)

z

 R(z)

h

x



Video Prediction: training

Training:
Observe frames

Compute h

Predict      from 
encoder 

Sample z, with: 

Predict next frame

backprop

      +

Pred(x)

y

x y

Dec(z,h)

h

C(y,y)

z R(z)

Enc(y,h)

D(z,z)

z

z̄

z̄

P(z / z̄ )∝exp [−β(D(z , z̄ )+R( z))]
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Actual, Deterministic, VAE+Dropout Predictor/encoder
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Cost optimized for Planning & Policy Learning

Differentiable cost function
Increases as car deviates from lane

Increases as car gets too close to other 
cars nearby in a speed-dependent way

Uncertainty cost:
Increases when the costs from multiple 
predictions (obtained through sampling 
of drop-out) have high variance.

Prevents the system from exploring 
unknown/unpredictable configurations 
that may have low cost.
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Learning to Drive by Simulating it in your Head

Feed initial state
Sample latent variable 
sequences of length 20
Run the forward model 
with these sequences
Backpropagate gradient of 
cost to train a policy 
network.
Iterate

No need for planning at 
run time.
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Adding an Uncertainty Cost (doesn’t work without it)

Estimates epistemic 
uncertainty
Samples multiple drop-
puts in forward model
Computes variance of 
predictions 
(differentiably)
Train the policy network 
to minimize the 
lane&proximity cost plus 
the uncertainty cost.
Avoids unpredictable 
outcomes
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Driving an Invisible Car in “Real” Traffic
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Driving!

Yellow: real car
Blue: bot-driven car
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Driving!

Yellow: real car
Blue: bot-driven car
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Take-Home Messages

SSL is the future
Hierarchical feature learning for low-resource tasks

Hierarchical feature learning for massive networks

Learning Forward Models for Model-Based Control/RL

My money is on:
Energy-Based Approaches

Latent-variable models to handle multimodality

Regularized Latent Variable models

Sparse Latent Variable Models

Latent Variable Prediction through a Trainable Encoder
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Speculations

Spiking Neural Nets, and neuromorphic architectures?
I’m skeptical…..

No spike-based NN comes close to state of the art on practical tasks

Why build chips for algorithms that don’t work?

Exotic technologies?
Resistor/Memristor matrices, and other analog implementations?

Conversion to and from digital kills us.

No possibility of hardware multiplexing

Spintronics?

Optical implementations?



      Thank You!
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