

What DL Hardware Will We Need?

Yann LeCun NYU - Courant Institute & Center for Data Science Facebook AI Research http://yann.lecun.com

1986-1996 Neural Net Hardware at Bell Labs, Holmdel

- 1986: 12x12 resistor array —
 Fixed resistor values
 - E-beam lithography: 6x6microns
- 1988: 54x54 neural net
 - Programmable ternary weights
 - On-chip amplifiers and I/O
- 1991: Net32k: 256x128 net ->
 - Programmable ternary weights
 - ► 320GOPS, 1-bit convolver.
- 1992: ANNA: 64x64 net
 - ConvNet accelerator: 4GOPS
 - 6-bit weights, 3-bit activations

LeNet character recognition demo 1992

Running on an AT&T DSP32C (floating-point DSP, 20 MFLOPS)

FPGA ConvNet Accelerator: NewFlow [Farabet 2011]

- NeuFlow: Reconfigurable Dataflow architecture
 - Implemented on Xilinx Virtex6 FPGA
 - > 20 configurable tiles. 150GOPS, 10 Watts
 - Semantic Segmentation: 20 frames/sec at 320x240

Exploits the structure of convolutions

NeuFlow ASIC [Pham 2012] 150GOPS, 0.5 Watts (simulated) if a calculator

Semantic Segmentation with ConvNets [Farabet 2012]

Lessons learned #1

- 1.1: It's hard to succeed with exotic hardware
 - ► Hardwired analog \rightarrow programmable hybrid \rightarrow digital
- 1.2: Hardware limitations influence research directions
 - It constrains what algorithm designers will let themselves imagine
- 1.3: Good software tools shape research and give superpowers
 - But require a significant investment
 - Common tools for Research and Development facilitates productization
- 1.4: Hardware performance matters
 - Fast turn-around is important for R&D
 - But high-end production models always take 2-3 weeks to train

1.5: When hardware is too slow, software is not readily available, or experiments are not easily reproducible, good ideas can be abandoned.

Lessons learned #2

- 2.1: Good results are not enough
 - Making them easily reproducible also makes them credible.
- > 2.2: Hardware progress enables new breakthroughs
 - General-Purpose GPUs should have come 10 years earlier!
 - But can we please have hardware that doesn't require batching?
- > 2.3: Open-source software platforms disseminate ideas
 - But making platforms that are good for research and production is hard.
- 2.4: Convolutional Nets will soon be everywhere
 - Hardware should exploit the properties of convolutions better
 - There is a need for low-cost, low-power ConvNet accelerators
 - Cars, cameras, vacuum cleaners, lawn mowers, toys, maintenance robots...

What will be the killer app of embedded DL hardware?

AR glasses!

- Yes, Facebook is working on AR glasses
- Yes, obviously, Facebook is working on DL hardware for AR glasses

DL-based functions in AR glasses:

- Position tracking / SLAM / 3D reconstruction
- hand pose tracking, gesture recognition
- Recognition: landmarks, products, faces, plants, birds, insects...
- OCR, ASR, TTS

• ...

Translation (from speech and OCR'ed text)

All of this on a tiny device that needs to run all day.

Supervised Learning works (but requires many labeled samples)

- Training a machine by showing examples instead of programming it
- When the output is wrong, tweak the parameters of the machine
- Works well for:
 - ► Speech→words
 - ► Image→categories
 - ► Portrait→ name
 - ► Photo→caption
 - ► Text→topic

Detectron2

Panoptic instance segmentation, (dense) body pose estimation
 Open source: https://github.com/facebookresearch/detectron2

Reinforcement Learning: works great for games and simulations.

- 57 Atari games: takes 83 hours equivalent real-time (18 million frames) to reach a performance that humans reach in 15 minutes of play.
 - [Hessel ArXiv:1710.02298]
- Elf OpenGo v2: 20 million self-play games. (2000 GPU for 14 days)
 - [Tian arXiv:1902.04522]
- StarCraft: AlphaStar 200 years of equivalent real-time play
 - [Vinyals blog post 2019]
- OpenAl single-handed Rubik's cube
 - 10,000 years of simulation

But RL Requires too many trials in the real world

- Pure RL requires too many trials to learn anything
 - it's OK in a game
 - it's not OK in the real world
- RL works in simple virtual world that you can run faster than real-time on many machines in parallel.

Anything you do in the real world can kill you

You can't run the real world faster than real time

FACEBOOK AI

New Deep Learning Architectures

Attention, Dynamic architectures, hyper networks.

Memory-Augmented Networks

- Recurrent networks cannot remember things for very long
 The cortex only remember things for 20 seconds
 We need a "hippocampus" (a separate memory module)
 LSTM [Hochreiter 1997], registers
 Memory networks [Weston et 2014] (FAIR), associative memory
 Stacked-Augmented Recurrent Neural Net [Joulin & Mikolov 2014] (FAIR)
 Neural Turing Machine [Graves 2014],
 - Differentiable Neural Computer [Graves 2016]

Differentiable Associative Memory == "soft RAM"

[Sukhbaatar arXiv:1907.01470]

Learning to synthesize neural programs for visual reasoning

https://research.fb.com/visual-reasoning-and-dialog-towards-natural-language-conversations-about-visual-data/

Networks produced by other networks

ConvNets on Graphs (fixed and data-dependent)

 Graphs can represent: Natural language, social networks, chemistry, physics, communication networks...

Y LeCun

Graphs/ Networks

Review paper: "Geometric deep learning: going beyond euclidean data", MM Bronstein, J Bruna, Y LeCun, A Szlam, P Vandergheynst, IEEE Signal Processing Magazine 34 (4), 18-42, 2017 [ArXiv:1611.08097]

Spectral ConvNets / Graph ConvNets

http://www.ipam.ucla.edu/programs/workshops/new-deep-learning-techniques/

Sparse ConvNets: for sparse voxel-based 3D data

- ShapeNet competition results ArXiv:1710.06104]
- Winner: Submanifold Sparse ConvNet
 - [Graham & van der Maaten arXiv 1706.01307]
 - PyTorch: https://github.com/facebookresearch/SparseConvNet

(a) Regular sparse convolution.

(b) Valid sparse convolution.

mean

86.00

85.49

84.32

82.29

77.96

65.80

42.79

77.57

84.74

) Block with a strided, a valid, and a de-convolution.

Lessons learned #3

- **3.1:** Dynamic networks are gaining in popularity (e.g. for NLP)
 - Dynamicity breaks many assumptions of current hardware
 - Can't optimize the compute graph distribution at compile time.
 - Can't do batching easily!
- 3.2: Large-Scale Memory-Augmented Networks...
 - Will require efficient associative memory/nearest-neighbor search
- 3.3: Graph ConvNets are very promising for many applications
 - Say goodbye to matrix multiplications?
 - Say goodbye to tensors?
- 3.4: Large Neural Nets may have sparse activity
 - ► How to exploit sparsity in hardware?

FACEBOOK AI

How do humans and animals learn so quickly?

Not supervised. Not Reinforced.

Babies learn how the world works by observation

Largely by observation, with remarkably little interaction.

Photos courtesy of Emmanuel Dupoux

Early Conceptual Acquisition in Infants [from Emmanuel Dupoux]

FACEBOOK AI

Self-Supervised Learning

Predict everything from everything else

Self-Supervised Learning = Filling in the Blanks

- Predict any part of the input from any other part.
- Predict the future from the past.
- Predict the masked from the visible.
- Predict the any occluded part from all available parts.

Pretend there is a part of the input you don't know and predict that.
 Reconstruction = SSL when any part could be known or unknown

Natural Language Processing: works great!

OUTPUT: This is a piece of text extracted from a large set of news articles

Image Recognition / Understanding: works so-so

[Pathak et al 2014]

Learning Representations through Pretext SSL Tasks

Text / symbol sequences (discrete, works great!)

- Future word(s) prediction (NLM)
- Masked words prediction (BERT et al.)
- Image (continuous)
 - Inpainting, colorization, super-resolution
- Video (continuous)
 - Future frame(s) prediction
 - Masked frames prediction
- Signal / Audio (continuous)
 - Restoration
 - Future prediction

Y. LeCun

Self-Supervised Learning works very well for text

<S>

b

a

<S>

C

SSL works less well for images and video

Huang et al. | 2014

Pathak et al. | 2016

Learning World Models for Autonomous AI Agents

Learning forward models for control

- ► s[t+1] = g(s[t], a[t], z[t])
- Model-predictive control, model-predictive policy learning, model-based RL
- Robotics, games, dialog, HCI, etc

Three Types of Learning

Reinforcement Learning

The machine predicts a scalar reward given once in a while.

weak feedback

- Supervised Learning
 - The machine predicts a category or a few numbers for each input
 - medium feedback
- Self-supervised Learning
 - The machine predicts any part of its input for any observed part.
 - Predicts future frames in videos
 - A lot of feedback

How Much Information is the Machine Given during Learning?

"Pure" Reinforcement Learning (cherry)

- The machine predicts a scalar reward given once in a while.
- A few bits for some samples

Supervised Learning (icing)

- The machine predicts a category or a few numbers for each input
- Predicting human-supplied data
- > 10 \rightarrow 10,000 bits per sample

Self-Supervised Learning (cake génoise)

- The machine predicts any part of its input for any observed part.
- Predicts future frames in videos

Millions of bits per sample

The Next AI Revolution

With thanks to Alyosha Efros and Gil Scott Heron

Get the T-shirt!

Jitendra Malik: "Labels are the opium of the machine learning researcher"

FACEBOOK AI

Energy-Based Models

Learning to deal with uncertainty while eschewing probabilities
Problem: uncertainty!

- There are many plausible words that complete a text.
- There are infinitely many plausible frames to complete a video.
- Deterministic predictors don't work!
- How to deal with uncertainty in the prediction?

$$E(x,y)=C(y,G(x))$$

The world is not entirely predictable / stochastic

Video prediction:

A deterministic predictor with L2 distance will predict the average of all plausible futures.

Blurry prediction!

Energy-Based Model

- Scalar-valued energy function: F(x,y)
 - measures the compatibility between x and y
 - Low energy: y is good prediction from x
 - High energy: y is bad prediction from x

• Inference:
$$\tilde{y} = argmin_y F(x, y)$$

Dark = low energy (good) Bright = high energy (bad) Purple = data manifold

y

[Figure from M-A Ranzato's PhD thesis]

Energy-Based Model: unconditional version

- Scalar-valued energy function: F(y)
 - measures the compatibility between the components of y
 - If we don't know in advance which part of y is known and which part is unknown
 - Example: auto-encoders, generative models (energy = -log likelihood)

Dark = low energy (good) Bright = high energy (bad) Purple = data manifold

Training an Energy-Based Model

- Parameterize F(x,y)
- Get training data (x[i], y[i])
- Shape F(x,y) so that:
 - F(x[i], y[i]) is strictly smaller than F(x[i], y) for all y different from y[i]
 - F is smooth (probabilistic methods break that!)
- Two classes of learning methods:
 - 1. Contrastive methods: push down on F(x[i], y[i]), push up on other points F(x[i], y')
 - 2. Architectural Methods: build F(x,y) so that the volume of low energy regions is limited or minimized through regularization

Seven Strategies to Shape the Energy Function

- Contrastive: [they all are different ways to pick which points to push up]
 - C1: push down of the energy of data points, push up everywhere else: Max likelihood (needs tractable partition function or variational approximation)
 - C2: push down of the energy of data points, push up on chosen locations: max likelihood with MC/MMC/HMC, Contrastive divergence, Metric learning, Ratio Matching, Noise Contrastive Estimation, Min Probability Flow, adversarial generator/GANs
 - C3: train a function that maps points off the data manifold to points on the data manifold: denoising auto-encoder, masked auto-encoder (e.g. BERT)
- Architectural: [they all are different ways to limit the information capacity of the code]
- A1: build the machine so that the volume of low energy stuff is bounded: PCA, K-means, Gaussian Mixture Model, Square ICA...
- A2: use a regularization term that measures the volume of space that has low energy: Sparse coding, sparse auto-encoder, LISTA, Variational auto-encoders
- A3: F(x,y) = C(y, G(x,y)), make G(x,y) as "constant" as possible with respect to y: Contracting auto-encoder, saturating auto-encoder
- ► A4: minimize the gradient and maximize the curvature around data points: score matching

Limit the capacity of z so that the volume of low energy stuff is bounded
 PCA, K-means, GMM, square ICA...

PCA: z is low dimensional $F(Y) = ||W^T WY - Y||^2$

K-Means, Z constrained to 1-of-K code $F(Y) = min_z \sum_i ||Y - W_i Z_i||^2$

Latent-Variable EBM

Allowing multiple predictions through a latent variable

Conditional:

$$F(x,y) = \min_{z} E(x, y, z)$$

$$F(x,y) = -\frac{1}{\beta} \log[\int_{z} \exp(-\beta E(x, y, z))]$$

Unconditional

$$F(y) = \min_{z} E(y, z)$$

$$F(y) = -\frac{1}{\beta} \log \left[\int_{z} \exp(-\beta E(y, z)) \right]$$

Latent-Variable EBM for multimodal prediction

- Allowing multiple predictions through a latent variable
- As z varies over a set, y varies over the manifold of possible predictions

$$F(x, y) = min_z E(x, y, z)$$

- Examples:
 - K-means
 - Sparse modeling

GLO [Bojanowski arXiv:1707.05776]

Latent-Variable EBM example: K-means

- Decoder is linear, z is a 1-hot vector (discrete)
- **Energy function:** $E(y,z) = ||y Wz||^2$ $z \in 1$ hot
- Inference by exhaustive search

 $F(y) = min_z E(y, z)$

Volume of low-energy y2 regions limited by number of prototypes k

y1

Contrastive Embedding

- Distance measured in feature space
- Multiple "predictions" through feature invariance
- Siamese nets, metric learning [YLC NIPS'93, CVPR'05, CVPR'06]
- Advantage: no pixel-level reconstruction
- Difficulty: hard negative mining
- Successful examples for images:
 - DeepFace [Taigman et al. CVPR'14]
 - PIRL [Misra et al. To appear]
 - MoCo [He et al. Arxiv:1911.05722]
- Video / Audio
 - Temporal proximity [Taylor CVPR'11]
 - Slow feature [Goroshin NIPS'15]

Negative pair: Make F large

MoCo on ImageNet [He et al. Arxiv:1911.05722]

Denoising AE: discrete

- [Vincent et al. JMLR 2008]
- Masked Auto-Encoder
 [BERT et al.]

Issues:

- Iatent variables are in output space
- No abstract LV to control the output

How to cover the space of This is a [...] of text extracted [...] a large set of [...] articles

This is a piece of text extracted from a large set of news articles

Prediction with Latent Variables

- If the Latent has too much capacity...
 - e.g. if it has the same dimension as y
- … then the entire y space could be perfectly reconstructed

E(x, y, z) = C(y, Dec(Pred(x), z))

- For every y, there is always a z that will reconstruct it perfectly
 - The energy function would be zero everywhere
 - ► This is no a good model....
- Solution: limiting the information capacity of the latent variable z.

Regularized Latent Variable EBM

Regularizer R(z) limits the information capacity of z
 Without regularization, every y may be reconstructed exactly (flat energy surface)

$$E(x, y, z) = C(y, Dec(Pred(x), z)) + \lambda R(z)$$

Examples of R(z):

- Effective dimension
- Quantization / discretization
- L0 norm (# of non-0 components)
- L1 norm with decoder normalization
- Maximize lateral inhibition / competition
- Add noise to z while limiting its L2 norm (VAE)
- <your_information_throttling_method_goes_here>

Unconditional Regularized Latent Variable EBM

- Unconditional form. Reconstruction. No x, no predictor.
 Example: sparse modeling
 - ► Linear decoder
 - ► L1 regularizer on Z

LatVar inference is expensive!

- Let's train an encoder to predict the latent variable
- $E(x, y, z) = C(y, Dec(z, h)) + D(z, Enc(x, y)) + \lambda R(z)$
- Predictive Sparse Modeling
 - \blacktriangleright R(z) = L1 norm of z
 - Dec(z,h) gain must be bounded (clipped weights)
 - Sparse Auto-Encoder
 - LISTA [Gregor ICML 2010]

Sparse AE on handwritten digits (MNIST)

- 256 basis functionsBasis functions (columns of decoder matrix) are digit parts
- All digits are a linear combination of a small number of these

Predictive Sparse Decomposition (PSD): Training

Training on natural images patches.

- ► 12X12
- 256 basis functions
- ▶ [Ranzato 2007]

Convolutional Sparse Auto-Encoder on Natural Images

Filters and Basis Functions obtained. Linear decoder (conv)
 with 1, 2, 4, 8, 16, 32, and 64 filters [Kavukcuoglu NIPS 2010]

Convolutional Sparse Auto-Encoder on Natural Images

- Trained on CIFAR 10 (32x32 color images)
- Architecture: Linear decoder, LISTA recurrent encoder

sparse codes (z) from encoder

9x9 decoder kernels

Y LeCun

FACEBOOK AI

Learning a Forward Model for Autonomous Driving

Learning to predict what others around you will do

A Forward Model of the World

Learning forward models for control s[t+1] = g(s[t], a[t], z[t])

Classical optimal control: find a sequence of action that minimize the cost, according to the predictions of the forward model

Planning/learning using a self-supervised predictive world model

- Feed initial state
- Run the forward model
- Backpropagate gradient of cost
- Act
- (model-predictive control)

Y. LeCun

or

Use the gradient train a policy networκ.

Stochastic policy network (optimized)

Y. LeCun

Using Forward Models to Plan (and to learn to drive)

- Overhead camera on highway.
 - Vehicles are tracked
- A "state" is a pixel representation of a rectangular window centered around each car.
- Forward model is trained to predict how every car moves relative to the central car.
 - steering and acceleration are computed

Video Prediction: inference

► After training:

- Observe frames
- Compute h
- Sample z
- Predict next frame

Video Prediction: training

- **Training**:
 - Observe frames
 - Compute h
 - Predict Z from encoder
 - Sample z, with:

 $P(z/\overline{z}) \propto \exp[-\beta(D(z,\overline{z})+R(z))]$

- Predict next frame
- backprop

Actual, Deterministic, VAE+Dropout Predictor/encoder

Y. LeCun

Cost optimized for Planning & Policy Learning

Differentiable cost function

- Increases as car deviates from lane
- Increases as car gets too close to other cars nearby in a speed-dependent way

Uncertainty cost:

- Increases when the costs from multiple predictions (obtained through sampling of drop-out) have high variance.
- Prevents the system from exploring unknown/unpredictable configurations that may have low cost.

(a) 19.8 km/h

Learning to Drive by Simulating it in your Head

- Feed initial state
- Sample latent variable sequences of length 20
- Run the forward model with these sequences
- Backpropagate gradient of cost to train a policy network.
- Iterate
- No need for planning at run time.

Stochastic policy network (optimized) Y. LeCun

Adding an Uncertainty Cost (doesn't work without it)

Driving an Invisible Car in "Real" Traffic

Y. LeCun

Driving!

- ► Yellow: real car
- **Blue: bot-driven car**

Driving!

Yellow: real carBlue: bot-driven car

Take-Home Messages

SSL is the future

- Hierarchical feature learning for low-resource tasks
- Hierarchical feature learning for massive networks
- Learning Forward Models for Model-Based Control/RL
- My money is on:
 - Energy-Based Approaches
 - Latent-variable models to handle multimodality
 - Regularized Latent Variable models
 - Sparse Latent Variable Models
 - Latent Variable Prediction through a Trainable Encoder

Speculations

- Spiking Neural Nets, and neuromorphic architectures?
 I'm skeptical.....
 - No spike-based NN comes close to state of the art on practical tasks
 - Why build chips for algorithms that don't work?

Exotic technologies?

- Resistor/Memristor matrices, and other analog implementations?
 - Conversion to and from digital kills us.
 - No possibility of hardware multiplexing
- Spintronics?
- Optical implementations?
FACEBOOK AI

Thank You!