
Abandoning the Dark Arts:
Scientific Approaches to Efficient Deep

Learning
Kurt Keutzer (EECS, UC Berkeley)
with PhD students and post-docs

Alon Amid, Zhen Dong, Amir Gholami, Qijing Huang, Suresh Krishna, Bichen Wu,
Zhewei Yao, Yang You, Xiangyu Yue, Tianjun Zhang, Sichen Zhao

and an army of undergraduate and MS-level researchers
Daiyaan Arfeen, Yaohui Cai, Ravi Krishna,, Aniruddha Nrusimha, Sheng Shen, Bernie Wang,

Yifan Yang (Tsinghua), Xuanyu Zhou and many others

with fellow faculty, Joey Gonzalez, Mike Mahoney, Krste Asanovic, Jim Demmel and Sanjit Seshia, Alberto S-V

as well as Peter Vajda (and others) at Facebook, Kiseok Kwon at Samsung,
Forrest Iandola, Albert Shaw & Others (DeepScale à Tesla),

Michaela Blott and Kees Vissers (and others) at Xilinx, and Liang Ma and Luciano Lavagno at P de Torino

DNNs Will Bring Intelligence to the Edge

2

Vehicle Factory

Workplace
Office

Construction
Site

Warehouse

Home

Rapidly Training
the DNN

Aggregating
training data

Finding the right
Deep Neural Network

model

Efficiently implementing the
DNN on embedded HW /

co-design DNN accelerators

An Integrated Approach to DNN Design
Has Four Key Aspects

Rapidly Training
the DNN

Aggregating
training data

Finding the right
Deep Neural Network

model

Efficiently implementing the
DNN on embedded HW /

co-design DNN accelerators

We’ve Gotten a Perspective

ICRA 2018
ICRA 2019
ICMR 2019
ISTC 2019
ICCV 2019

NeurIPs 2019

SqueezeNet (2016): 1606 citations
SqueezeDet
• ECV/CVPR 2017– Best Paper Award

SqueezeNext
• ECV/CVPR 2018
ShiftNet
• CVRP spotlight 2018
SqueezeSeg v1, v2
• ICRA 2018, 2019
DiracDeltaNet
• FPGA 2019
FBNet
• CVPR Oral 2019

HAWQ: ICCV2019
AAAI 2020
Squeezelerator
• DAC 2018
• IBM J. Res. Dev. 2019
Synetgy
• FPGA 2019

FireCaffe
• CVPR 2016
LARS, LAMB
• ICPP 2018 – Best Paper Award

Hessian Aware Methods
• NeurIPS’18

Training
• Momentum,
• Learning rate
• Batch size

Training Data
• Data Augmentation
• Cropping
• Data distribution

DNN Design
• # Layers and types
• Residuals

Efficient Implementation
• Pruning
• Quantization

An Integrated Approach to DNN Design
Has Four Key Aspects

Deep Neural Net Design, Training,
and Implementation

Rapidly Training
the DNN

Aggregating
training data

Finding the right
Deep Neural Network

model

Efficiently implementing the
DNN on embedded HW /

co-design DNN accelerators

Challenge #0:
DNNs are hard to understand

• Deep Neural Nets are a somewhat counter-intuitive medium for expressing
algorithmic ideas

• But that’s our fault not their fault
7

Challenge #1:
Large space of alternatives (aka Design Space)

• Design space of Deep Neural
Nets is huge!
– Number of layers
– Design choices for each

layer:
• Layer type
• kernel size = {1, 3, 5}
• channel size = {32, 64, 128,

256, 512}

8
[1] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

Challenge #2:
Diverse Targets for DNN, Each is Different

9
IoT devicesGPUs iPhones Android phones Low end phones Wearable devices

• Ideally, we should design different Neural Networks to
different devices/tasks/computation budgets

• Each one has different computational characteristics
• Different latency/energy profile and trade-offs

Challenge #3a
Edge Applications Extra Bring Constraints

Power (Watts)

• Convenient and economical packaging
limits how much power our mobile devices
can dissipate

• 2-5W max seems common among mobile
handsets, up to 20W in other applications

• IP Blocks will have much stricter constraints

Energy (Joules) = power * time

• Battery life limits the total energy that our
mobile devices can use

• iPhoneX battery 10.35 WHours

10https://www.macrumors.com/2017/11/03/iphone-x-teardown-ifixit/

Applications may bring further constraints on accuracy and latency

Challenge #3b:
Constraints are Tight at the Edge

OZO Digital Pedometer
80μW, 0.72Wh | 1 year

iwatch Series 3 1.07Wh | 3.8kJ
60mW, 18 hours

2017 iPhone8 | 6.96Wh = 25kJ
Talk time: 14h = 0.5 W
Video: 13h = 0.54 W

iPad Pro | 41Wh = 147kJ
Apple: 10h use = average 4.1W

Kindle Oasis | 0.91Wh = 3.276kJ
Ebook Friendly: “15days @ 30m/day” = 7.5h @ 0.12 W average

Eee PC 1000HE | 49Wh = 176kJ
Asus: 9.5h = 5.2 W

13 inch Macbook Air | 54Wh = 194.4kJ
Apple: 12h = 4.5 W

15 inch Macbook Pro |
76Wh = 273.6kJ
Apple: 10h = 7.6 W

Average Power D
iss

ipatio
n

--

Batte
ry Lif

e

1-1000 m
W

8-240 Hours

11 W

2.4 H
ours

2.5 W

8.4 Hours

1 Wh = 3.6 kJ

Challenge #4:
Hard to Accurately Measure Key Metrics

12

• Our primary concerns are (accuracy), latency, and energy
• What’s easy to measure is flops and model parameters
• However, a lower FLOP count does not necessarily mean lower latency

– NASNet-A has slightly smaller FLOPs than MobileNetV1, but the
latency is 1.6x slower

– SqueezeNet V1.0 50x smaller than AlexNet but slower on some
targets

NASNet [1]

[1] Zoph, Barret, et al. "Learning transferable architectures for scalable image recognition." arXiv preprint arXiv:1707.070122.6 (2017).
[2] Dai, Xiaoliang, et al. "ChamNet: Towards Efficient Network Design through Platform-Aware Model Adaptation." arXiv preprint
arXiv:1812.08934 (2018).

Input/output channels vs latency [2]

SqueezeNet:
A Child of the Dark Arts

[1] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." NIPS2012
[2] Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 1MB model size." arXiv: 1602.07360 (2016). (February 2016)13

CNN Top-5 Accuracy
ImageNet

Model
Parameters

Model
Size

AlexNet[1] 80.3% 60M 243MB

SqueezeNet[2] 80.3% 1.2M 4.8MB

AlexNet [1]

SqueezeNet [2]

50x parameter
reduction

• 1000 neural architectures explored
• Average 32 GPUs x 12 hours per NN explored
• Cost on AWS: 1000 x 32 x 12 x $0.9 ≈ $350K

Dark Art or Art?

Dark Art:
• Blindly invoking forces that you do not

understand or truly control
• Unbridled parameter tuning
• Cf. Faust, Goethe, Marlowe, 14

Art:
• Intelligent application of design

principles

CNN Layer have different
Computational Characteristics - 1

15

Spatial Convolution Pointwise (1x1) Convolution

Normalized AI: 1.0 Normalized AI: 0.6

CNN Layer have different
Computational Characteristics - 2

16

Depthwise ConvolutionGroup Convolution

Normalized AI: 0.8 Normalized AI: 0.02

Comparision of Arithmetic Intensity
of Common CNN Layers

17

Net
Layer

FLOPs
(Million)

Memory Ops:
param+activation

(Million)

Arithmetic
Intensity

Normalized
Arithmetic
Intensity

Spatial
convolution

462 2.560 180 1.0

Point-wise
convolution

51 .463 110 0.6

Group
convolution

116 .790 146 0.8

Depthwise
convolution

0.9 .205 4.3 0.02

• DK: kernel size = pointwise conv 1x1
• DK: kernel size = spatial conv 3x3
• M: input channels = 512
• N: filters, output channels = 512

• DF: input resolution width, height = 14
• G: Group Size, group convolution = 4
• G: Group Size, depthwise conv = 512

⨷ …

512

3x3	conv

512

14
14

512

33

1. AI for layer types is different
2. AI for Depthwise very low
3. But, total FLOPs is much lower
4. Consider Accuracy/(AI/OPS)?

Radical New Architecture:
ShiftNet (CVPR spotlight 2018)

• A lesson from SqueezeNet: spatial convolution (3x3, 5x5, etc.) is expensive ...
– Replace spatial convolutions with the “Shift” operation[1] that requires zero-

parameter, zero-FLOPs

18

Top-1 Acc. Parameter size Reduction

AlexNet 57.2 60 million 1X

SqueezeNet 57.5 1.2 million 50X

ShiftNet-C 58.8 0.78 million 77X

[1] Wu B, Wan A, Yue X, Jin P, Zhao S, Golmant N, Gholaminejad A, Gonzalez J, Keutzer K. Shift: A Zero FLOP,
Zero Parameter Alternative to Spatial Convolutions. arXiv preprint arXiv:1711.08141. 2017 Nov 22. CVPR 2018

• Other tasks:
– Face verification: 37X parameter reduction
– Style transfer: 6X parameter reduction

• Classification:

Various Research Directions
with Shift

19

Improving the Shift operator
[1] Constructing Fast Network through Deconstruction of
Convolution, NeurIPS18 – Learnable shift
[2] AddressNet: Shift-Based Primitives for Efficient Convolutional
Neural Networks – GPU implementation of Shift
[3] All You Need is a Few Shifts: Designing Efficient Convolutional
Neural Networks for Image Classification

Hardware-software Co-design:
[4] Synetgy: Algorithm-hardware co-design for convnet
accelerators on embedded fpgas, FPGA19 – Shift on FPGA
[5] Mapping Systolic Arrays onto 3D Circuit Structures:
Accelerating Convolutional Neural Network Inference
[6] Full-stack Optimization for Accelerating CNNs with FPGA
Validation

Applications:
[7] Spatial Shortcut Network for Human Pose Estimation
[8] Temporal Shift Module for Efficient Video Understanding
[9] Mobilefacenets: Efficient cnns for accurate real-time face verification on mobile devices
[10] Motion feature network: Fixed motion filter for action recognition
[11] MobiVSR: A Visual Speech Recognition Solution for Mobile Devices

DiracDeltaNet
CNN with No Spatial Convolutions

20

• Even nets for embedded/edge applications rely
heavily on linear algebra

• ShuffleNetV2
– 1x1 conv
– 3x3 conv stride=2
– 3x3 depth-wise conv stride=1
– 3x3 depth-wise conv stride=2
– 3x3 max-pooling
– Shuffle and concatenation

• But … FPGAs are relatively weaker at linear
algebra but stronger at supporting Boolean
operations and low precision

• To avoid FPGA’s weaknesses and exploit
FPGA strengths we created:

• DiracDeltaNet
– No spatial (e.g. 3 x 3) convolutions
– 1x1 conv
– 2x2 max-pooling
– Shift
– Shuffle and concatenation

– 4 bit weights
– 4 bit activations

21

(-2, 2)

(2, 0.75)

Deformable convolutions
–see poster – Jenny Huang

Hardware Optimization: Algorithm Modification:

0. Original Deformable

Accuracy 1(mIoU ↑): 79.9

1 Accuracy for Semantic Segmentation on CityScapes

• Preloads weights to on-chip buffer
• Loads input and offsets directly from

DRAM

Input BufferInput Buffer

The DNN Architect’s Palette

22

Spatial Convolution
e.g. 3x3

Pointwise Convolution
1x1

ShiftChannel Shuffle

Depthwise Convolution

Small Neural Nets Are Beautiful
Keynote– ESWeek – Art of DNN Design

The Art
• Overall architecture: economize on layers while retaining accuracy
• Layer types

– Kernel reduction: 5 x 5 à 3 x 3 à 1 x 1
– Channel reduction: e.g. FireLayer
– Experiment with novel layer types that consume no FLOPS

• Shuffle
• Shift

• Residual connections

23

Iandola, Forrest, and Kurt Keutzer. "Small neural nets are beautiful: enabling embedded systems with small deep-
neural-network architectures." In Proceedings of the Twelfth International Conference on Hardware/Software
Codesign and System Synthesis Companion, p. 1. ACM, 2017. (ESWeek 2017). Also, (arXiv:1710.02759)

From Dark Art to Art:
Designing a Deep Neural Net

24

• Manual design:
• Each iteration to evaluate a point in the design space is very expensive
• Exploration limited by human imagination

Moving DNN Design from an Art to
a Science

ADNN Model Architecture space:
candidate: a

waweights:
Problem formulation:

Inner problem: training a
neural network

Outer problem: enumerating
candidates architectures in A

Our approach: Differentiable Neural Architecture
Search

26

… …

Stochastic super net
Proxy

dataset

Sample

Deploy Operator
Latency

LUT

Target device
Benchmark

…

Search space

… …
Neural ArchitecturesOperators

Probability

L(w, ✓)
Loss function

Train
weights

Train probability

Define the Search Space

27

… …

Stochastic super net

…

Search space

Operators

Probability

An instantiation of a
Stochastic Super Net

• A 22 layer network divided into 7 groups
• Base channel sizes of each group is pre-determined
• Down-sampling at the first convolution at group {1, 3, 4, 5,

6}
• Each layer can choose a variation of the template module

28

Layer template with different configurations of
• Kernel size of the depthwise convolution
• Expansion ratio (Channel size)

… …

Stochastic super net

Measuring Latency of a Point (DNN)
in the Design Space

29

… …

Stochastic super net
Proxy

dataset

Deploy Operator
Latency

LUT

Target device
Benchmark

…

Search space

L(w, ✓)
Loss function

• We want to move from measuring:
• MACs, model parameters

• To latency on the real target

Measuring Latency of a Point (DNN)
in the Design Space

30

… …

Stochastic super net
Proxy

dataset

Deploy Operator
Latency

LUT

Target device
Benchmark

…

Search space

L(w, ✓)
Loss function

Operators

Probability

• Approximate overall latency as sum of the latency of the layers of the DNN

Train with to Minimize Loss Function

31

… …

Stochastic super net
Proxy

dataset

Deploy Operator
Latency

LUT

Target device
Benchmark

…

Search space

Operators

Probability

L(w, ✓)
Loss function

Train
weights

Train probability

Our approach: Differentiable Neural Architecture
Search

32

… …

Stochastic super net
Proxy

dataset

Sample

Deploy Operator
Latency

LUT

Target device
Benchmark

…

Search space

… …
Neural ArchitecturesOperators

Probability

L(w, ✓)
Loss function

Train
weights

Train probability

DNAS: Differentiable Neural Architecture Search
CVPR 2019 Oral

33

Differentiable Neural Architecture Search:
• Extremely fast: 8 GPUs, 24 hours
• Optimize for actual latency
• General: can be applied to different problems In collaboration

with FB
Peizhao Zhang,

Yanghan
Wang,

Fei Sun,
Yiming Wu,

Yuandong Tian,
Peter Vajda,
Yangqing Jia

Visualization of Mobile DNNs

34

Work Continues: FBNet with Channel Search
Alvin Wan and FB

- (top-left) Original
DNAS does not
include channel
search

- (top-right) DNAS with
naive modifications
cannot support
channel search.

- (bottom-left) Pruning
can only train one
potential architecture
at a time.

- (bottom-right) Our
DNAS can jointly
search over multiple
channel options.

How Does this Address the Challenges of DNN Design

• Challenge 0: Comprehensibility
– Our considerations are moved to a higher level:

• Layer definitions, number of layers, activation function
– We don’t have to understand the DNN, the optimization system does

• Challenge 1: Large Design Space
– Use Stochastic Gradient Descent to efficiently search space

• Challenge 2 and 4: Diverse Targets, Hard to measure
– Precharacterize layers on targets and gather real latency and energy data

• Challenge 3: Constraints are tight
– We integrate constraints into the optimization

36

Further Memory Reductions
Through Pruning and Quantization

[1] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural
networks." NIPS2012
[2] Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 1MB model size." arXiv:
1602.07360 (2016). (February 2016) 1606 Citations 37

CNN Top-5 Accuracy
ImageNet

Model
Parameters

Model
Size

AlexNet[1] 80.3% 60M 243MB

SqueezeNet[2] 80.3% 1.2M 4.8MB

AlexNet [1]

SqueezeNet [2]

10X
compresses
to 500KB

Model Design

50
X

Deep Neural Net Design, Training,
and Implementation

Rapidly Training
the DNN

Aggregating
training data

Finding the right
Deep Neural Network

model

Efficiently implementing the
DNN on embedded HW /

co-design DNN accelerators

Quantization of weights, activations:
Our Workhorse Optimization

39

Quantization is a very powerful approach:

• Diminishes our biggest cost: memory traffic on and off-chip

Speed and Energy More Impacted by
Memory Access than Computation

40

L1 D-Cache
(per core)

L2 Cache
(shared)

Off-chip
DRAM

Size 32 KB 2 MB 4 GB

Read Latency 4 cycles 22 cycles ~200 cycles

Read Bandwidth 20.8 GB/s 166.4 GB/s 28.7 GB/s

L1 Cache/TLB
L2 Cache

Galaxy S7

Samsung Exynos M1
Access Times

In 45nm process
16 bit operands
• Add: 1
• Mult: 3.4
• Offchip DRAM

access: 3556x

M. Horowitz,
“Computing’s Energy
Problem (and what
we can do about it)”,
2014 ISSCC

Quantization of weights, activations:
Our Workhorse Optimization

41

Quantization is a very powerful approach:

• Diminishes our biggest cost: memory traffic on and off-

chip

Good for reducing power and latency

• Lots of “tricks” and expensive hyper-parameter tuning

• Ad-hoc rules that do not generalize

Mixed-Precision: Exponential Search Space

The bit configuration grows exponentially with the number of layers
4 Billion configurations for a 16 layer network

2-bit

16-bit

4-bit

8-bit

2-bit

16-bit

4-bit

8-bit

2-bit

16-bit

4-bit

8-bit

2-bit

16-bit

4-bit

8-bit

42

Various Approaches to Quantization

• One approach: reduce the search space by limiting quantization precision options to a
uniform precision
– Example: Deep Compression [1]

• This leads to significant accuracy drop. To address this many modifications were proposed
for uniform precision quantization, such as:
– PACT: Limit activation range through clipping after ReLU [2]
– LQ-Net: Instead of using min/max values learn the clipping range [3]
– RVQuant: Use a mixture of uniform and non-uniform quantization [4]
However, uniform quantization to low bits leads to significant accuracy degradation
despite using all of the above modifications/improvements

• AutoML based methods that search an exponentially large search space and test several
different bit-precision configurations; however, they are VERY expensive

43

[1]Han S, Mao H, Dally WJ. Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding. arXiv:1510.00149.
[2]Choi J, Wang Z, Venkataramani S, Chuang PI, Srinivasan V, Gopalakrishnan K. PACT: Parameterized clipping activation for quantized neural networks.
(arXiv:1805.06085) 2018.
[3]Zhang D, Yang J, Ye D, Hua G. LQ-Nets: Learned quantization for highly accurate and compact deep neural networks. ECCV’18.
[4]Park E, Yoo S, Vajda P. Value-aware quantization for training and inference of neural networks. ECCV’18.

Key Observation of Our Work

• All you DSP old-timers know, when you move from float to fixed to int we move from a single
point to a discrete region in the domain: how do we know whether this will impact the accuracy?

44

45

What if we better understood the
loss landscape?

16

I

conv1
16 16

I

conv2/3

+

16 16

I

conv4/5

+

16 16

I

conv6/7

+

32 32

I/
2

conv8/9

Downsample

+ +

64 64
I/
4

conv18/19

+

Bit-Setting 1

Bit-Setting 2
8

4

4/2

4/8

2/4

8/2

8/2

4/4

4/2-4

4/8-8

8/4

2/4
8

2

FC&softmax

min
w

J (w) =
1

N

NX

i=1

cost(w, xi)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Li, Hao, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. "Visualizing the loss landscape of neural nets."
In Advances in Neural Information Processing Systems, pp. 6389-6399. 2018.

VGG 56

The Second Derivative Tells us More About the Shape
of a Function (e.g. Loss Function)

46

• At the origin, the first derivative of y = x2, y =¼ x2 , y =4 x2 is all the same: 0
• But, the second derivatives give more information: 2, ½, and 8 respectively

Use the Hessian Matrix
of the DNNs Model Parameters

• The Hessian Matrix can give us comprehensive information about the Loss Landscape curvature
• Each Hessian matrix entry computes how fast gradient values are changing in different direction -

> gradient of gradient

47

Fortunately, We Don’t have to Explicitly Form Hessian

48

• We only need Hessian eigenvalues and not the matrix itself

• Eigenvalue computation only needs multiplying H to random vectors (so called power iteration)

– The matrix-vector multiplication can be done by a second gradient backpropogation

– Therefore, no need to form the full Hessian matrix.

– We can compute Hessian spectrum using randomized methods

average tr(A) =
1

n

X

i

Aii =
1

n

X

i

�i(A)
<latexit sha1_base64="huxJx2gERj65etQ37DzpZXzkTF0=">AAACPHicbVDLSsNAFJ34tr6qLt0MFkE3JbHiYyFY3bisaFVoQphMJ+3QySTM3Igl5MPc+BHuXLlxoYhb107aIr4OzHA4517uvSdIBNdg24/W2PjE5NT0zGxpbn5hcam8vHKp41RR1qSxiNV1QDQTXLImcBDsOlGMRIFgV0HvpPCvbpjSPJYX0E+YF5GO5CGnBIzkl89dYLeQEVNDOgznGNRmfQsfYjdUhGZOnsnc1WnkZzyvm4/n/3gcu8KMbBOfm+aSX67YVXsA/Jc4I1JBIzT88oPbjmkaMQlUEK1bjp2AlxEFnAqWl9xUs4TQntmwZagkEdNeNjg+xxtGaeMwVuZJwAP1e0dGIq37UWAqIwJd/dsrxP+8VgrhvpdxmaTAJB0OClOBIcZFkrjNFaMg+oYQqrjZFdMuMcmAyXsYwkGB3a+T/5LL7apTq9bOdipHx6M4ZtAaWkebyEF76AidogZqIoru0BN6Qa/WvfVsvVnvw9Ixa9Szin7A+vgEj8+uaQ==</latexit>

Surpass Ad Hoc Approaches by Using Hessian
ICCV 2019- Zheng Dong

49

Only quantize to ultra-low precision those layers that have small Hessian spectrum (relatively flat)

Hessian AWare Quantization

50

Contributions of HAWQ:

• A systematic, second-order algorithm for inference quantization

• Fine-tuning schedule based on second-order statistics

• Novel compression results exceeding all existing state-of-the-art

methods

• No more ad-hoc tricks
• Dong, Zhen, Zhewei Yao, Amir Gholami, Michael Mahoney, and Kurt Keutzer. "HAWQ: Hessian AWare

Quantization of Neural Networks with Mixed-Precision." arXiv preprint arXiv:1905.03696 (2019). ICCV 2019
• Dong, Zhen, Zhewei Yao, Yaohui Cai, Daiyaan Arfeen, Amir Gholami, Michael W. Mahoney, and Kurt Keutzer.

"HAWQ-V2: Hessian Aware trace-Weighted Quantization of Neural Networks." arXiv preprint
arXiv:1911.03852 (2019).

Cloudfree Mobile NLP

51

• Another important application of quantization is to enable In-Car NLP with real-time inference

and without the need for cloud connectivity

Natural Language Processing with BERT
Big Model à Big Challenge for Quantization

• BERT based models have become de-facto architecture for NLP tasks
o BERT-base: 12 Layer, 12 Heads, 768 Hidden Dim (110M param, 415MB)
o BERT-large: 24 Layer, 16 Heads, 1024 Hidden Dim (340M param, 1297MB)

52Devlin, Jacob, et al. "BERT: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).

Q-BERT: : Hessian Based Ultra Low Precision
Quantization of BERT-- Sheng Shen (AAAI 2020)

S. Sheng, Z. Dong, J. Ye, L. Ma, Z. Yao, A. Gholami, M. Mahoney, K. Keutzer, Q-BERT: Hessian Based Ultra Low Precision
Quantization of BERT. To Appear AAAI 2020

10th Layer

4th Layer

Training
• Momentum,
• Learning rate
• Batch size

Training Data
• Data Augmentation
• Cropping
• Data distribution

DNN Design
• # Layers and types
• Residuals

Efficient Implementation
• Pruning
• Quantization

An Integrated Approach to DNN Design
Has Four Key Aspects

min
w

J (w) =
1

N

NX

i=1

cost(w, xi)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Extras

55

