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Motivation

. Named Entity Recognition (NER) is a widely used Information Extraction task in many industrial applications
and use cases

. Ramping up on a new domain can be difficult

= Lots of unlabeled data, little of no labeled data and often not good enough for training a model with
good performance

Solution A
? Hire a linguist or data scientist to tune/build model
?  Hire annotators to label more data or buy similar dataset
?  Time/compute resource limitations
Solution B
? Pre-trained Language Models such as BERT, GPT, ELMo are great at low-resource scenarios
?  Require great compute and memory resources and suffer from high latency in inference

?  Deploying such models in production or on edge devices is a major issue
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Model training setup
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; * Train set size: 150/300/750/1500/3000
* Report averaged F1 (20 experiments per train set size)

annotated labels

Integrated model knowledge distillation and

pseudo-labeling in loss function Training procedure

1. Fine-tune BERT with labeled data

Lo CrossEntropy(9, ¥) labeled example 2. Train compact model using modified loss
task = | CrossEntropy (¥, Preacher) unlabeled example

Ldistillation = KL(l‘)gitSteacherl |loyit5compact)

Loss = @ - Lgask + B - Laistintations a+p =10




Compact model performance

BERT-base as teacher BERT-large as teacher
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Takeaways

* Compact models perform equally well as pre-trained LM in low-resource scenarios, and with superior
inference speed and with compression rate is 36x-113x vs. BERT

 Compact models are preferable for deployment vs. pre-trained LM in such use-cases
* Many directions to explore:

* Compact model topology — how small/simple can we make the model?

e Other NLP tasks, pre-trained LM

e Other ways to utilize unlabeled data

Code available in Intel Al’'s NLP Architect open source library

NLP ZARCHITECT

O NervanaSystems/nlp-architect




