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Motivation

Approach

@ Low-resource named entity recognition © Pre-trained contextual Language Models
(NER) is a challenging Natural Language (LM) were shown to improve many NLP
Processing (NLP) task [1] yet widely used for tasks

Information Extraction @ Pre-trained LMs are also good for training

@ In most cases there is a lot of unlabeled models with scarcely labeled/low resource
data and almost no labeled data

@ Poor model performance can be fixed by: @ Pre-trained LMs impose:
' Tagging more data ' Heavy memory
! With expert DS/Linguist/Annotator ' Heavy compute

I Sometimes cannot be fixed because of ' A challenge to deploy in production
operational constraints

Training Setup

1. Knowledge Distillation [2]
- Teacher-Student training setup
« Pre-trained LM teacher (BERT)
- Compact student (~3M params.)
2. Pseudo-labeling [3]
- Utilize abundance of unlabeled data

- Large model generates pseudo entities
for the compact model
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Models
Teacher - BERT [4] (110M/340M params.)

Compact — LSTM-CNN [5] with Softmax/CRF
classifier, GloVe embedding (3M params.)

Low-resource Dataset Simulation
CoNLL 2003 [6] - English (PER, ORG, DAT"
Randomly sample labeled training sets
Train set sizes: 150/300/750/1500/3000
Use remaining training data as unlabeled examples

Training Steps
Fine-tune BERT on labeled data

Train compact model using distillation + pseudo-
labeling loss

Compact Model Accuracy Inference Speed vs. Teacher Model

BERT-base as teacher CPU backend”®

GPU backend”

BERT-base BERT-large

BERT-base BERT-large

classifier CRF Softmax CRF Softmax classifier CRF Softmax CRF Softmax

Batch=1 3.3x 4.3x 8.1x 1

64 40.0x 45.2x 109.5x 12
128 49.9x 55.6x 123.6X 13

0.6x Batch=1 0.8x 2 6X 1.5x 5.0x

32 28.6X 33.7x 85.2X 100.4x 32 1.3x 5.1x 3.5x% 13.1X

3.8x 04 2.3X 7.2X 6.3X 19.6x%
7.8x 128 3.9x% 9.7X 10.8x 27.0x

—&— BERT-base
- Compact+Softmax *Dual Intel® Xeon® Processor E5-2699A v4 @ 2.40GHz; 251GB RAM; GPU: Titan Xp 12GB; OS: Ubuntu 1
- Compact+CRF
- DistCompact+Softmax
- DistCompact+CRF

750 1500 3000

6.04.1 (4.15.0-50- generic); Tensorflow 1.12 and PyTorch 1.0

Summary

No. labeled training samples

BERT-large as teacher pre-trained LMs in low-resource scenarios

Teacher models are qualitatively better with
labeled data

We are exploring:
Additional NLP tasks

Code available in NLP Architect library
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Additional Transformer based pre-trained LM

Non-recurrent compact models for fast inference oo’
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