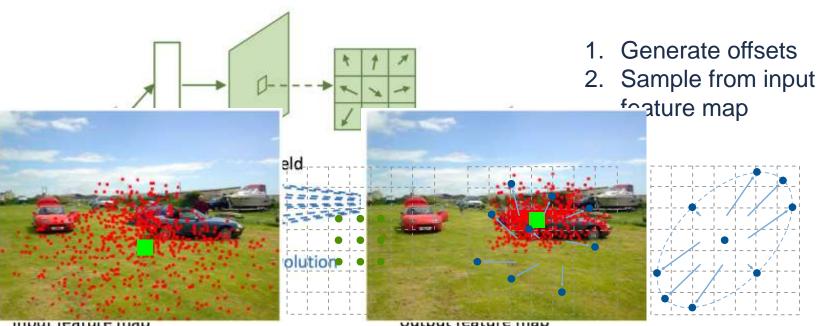


Algorithm-Hardware Co-design for Deformable Convolution

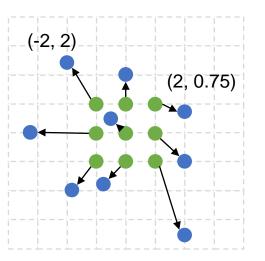
Qijing Huang*, Dequan Wang*, Yizhao Gao⁺, Yaohui Cai[‡], Zhen Dong, Bichen Wu, Kurt Keutzer, John Wawrzynek


University of California, Berkeley [†]University of Chinese Academy of Science [‡]Peking University

EMC2 Workshop @ NeurIPS 2019

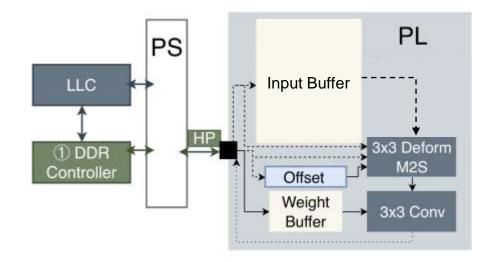
Motivation

- **Deformable Convolution** is an input-adaptive dynamic operation that samples inputs from variable spatial locations
- Its sampling locations vary with:
 - Different in
 - Different ou
- It captures the
 - Scales
 - Aspect Rat
 - Rotation Ar
- Challenges:
 - Increasec
 - Irregular |
 - Not frie



Sampling Locations (in red) for Different Output Dixesceptore melds

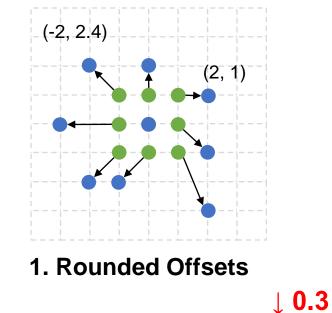
Algorithm-Hardware Codesign


Algorithm Modification:

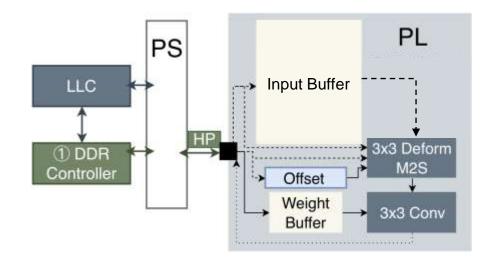
0. Original Deformable

Accuracy ¹(mIoU \uparrow): **79.9**

Hardware Optimization:



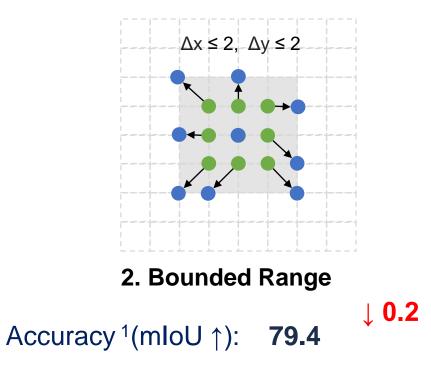
- Preloads weights to on-chip buffer
- Loads input and offsets directly from DRAM

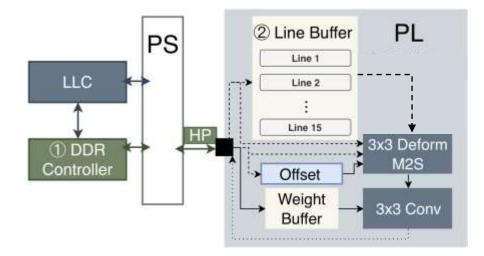

Algorithm-Hardware Codesign

Algorithm Modification:

Accuracy ¹(mIoU ↑): **79.6**

Hardware Optimization:


Reduces the computation for bilinear interpolation



Algorithm-Hardware Codesign

Algorithm Modification:

Hardware Optimization:

• Buffers inputs in the on-chip line buffer to allow spatial reuse

Resolitshm-Hardware Codesign

Hardware Performance

Hardware Optimization:

Operation	Original	Deformable	Bound	Square	Without LLC		With LLC	
			(buffered)	(multi-ported)	Latency (ms)	GOPs	Latency (ms)	GOPs
Full 3×3 Conv	\checkmark				43.1	112.0	41.6	116.2
		\checkmark			59.0	81.8	42.7	113.1
		\checkmark	\checkmark		43.4	111.5	41.8	115.5
		\checkmark	\checkmark	\checkmark	43.4	111.5	41.8	115.6
Depthwise 3×3 Conv	\checkmark				1.9	9.7	2.0	9.6
		\checkmark			20.5	0.9	17.8	1.1
		\checkmark	\checkmark		3.0	6.2	3.4	5.5
		\checkmark	\checkmark	✓	2.1	9.2	2.3	8.2

5-Oeptays Rectangulation warse co-design methodology for the deformable Convolution achieves and .36× and 9.76וspeaker is stand with the set of the deformable convolution on FPGA ShuffleNetV2 Deform Conv Depthwise 68.0 Email: Gijing huang Oberkeley.edu

