

Algorithm-Hardware Co-design for **Deformable Convolution**

Qijing Huang*, Dequan Wang*, Yizhao Gao⁺, Yaohui Cai[‡], Zhen Dong, Bichen Wu, Kurt Keutzer, John Wawrzynek University of California, Berkeley, [†]University of Chinese Academy of Science, [‡]Peking University

Motivation

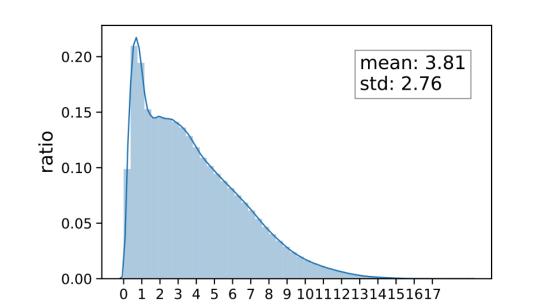
- Inefficient Model Designs many CV tasks use large inefficient models and operations solely optimized for accuracy
- Limited Hardware Resources embedded devices have limited compute resources and a strict power budgets
- Real-time Requirements accelerators must guarantee

Deformable Convolution

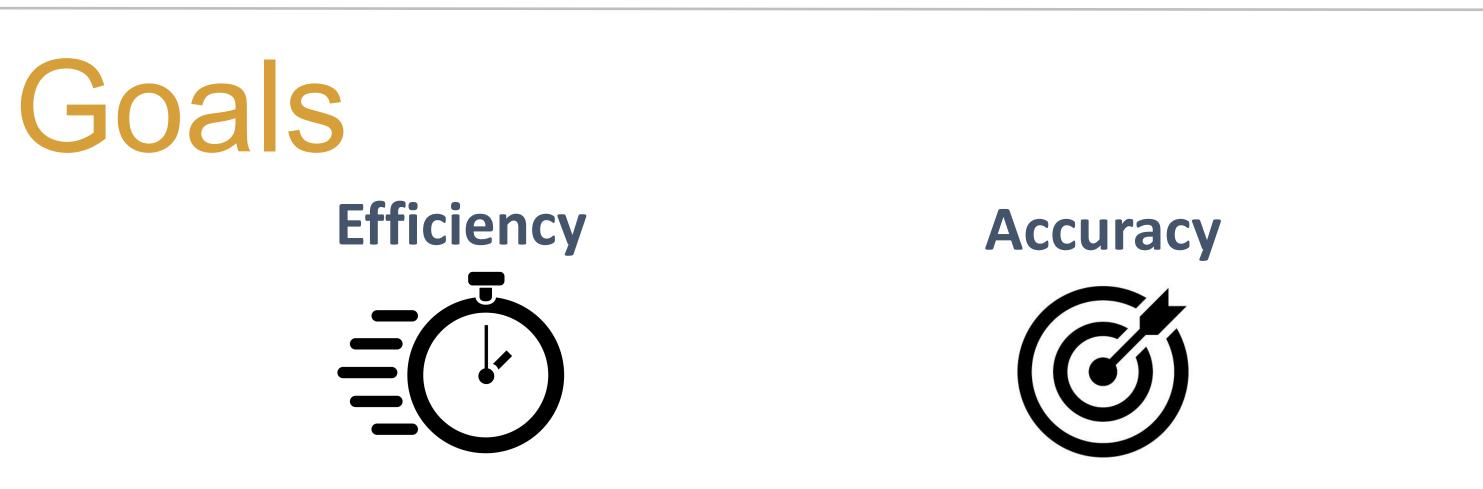
Deformable Convolution is a <u>dynamic input-adaptive</u> operation that samples inputs from variable spatial locations

- Its sampling locations vary with:
 - Different input images
 - Different output pixel locations

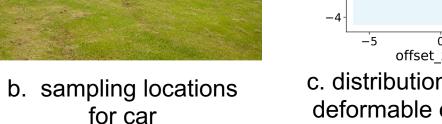
Figure 1. Deformable Convolution Example



response within certain time constraints



 Codesign algorithms and accelerators that satisfy embedded system constraints and fall on the pareto curve of the accuracy-latency tradeoff.



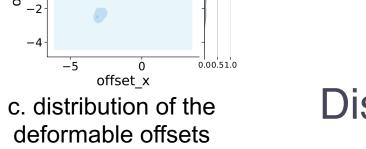
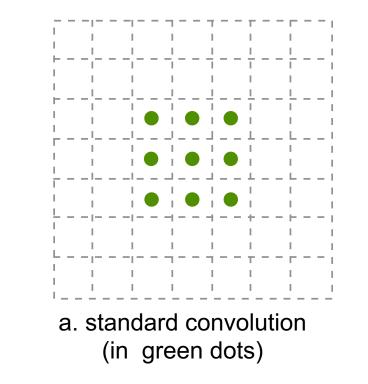


Figure 2. Distance Distribution on 5000 images from COCO

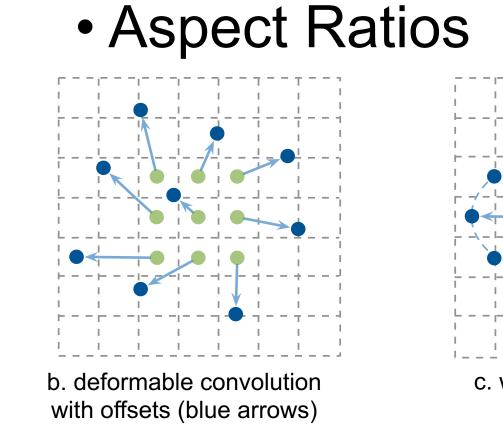
distance

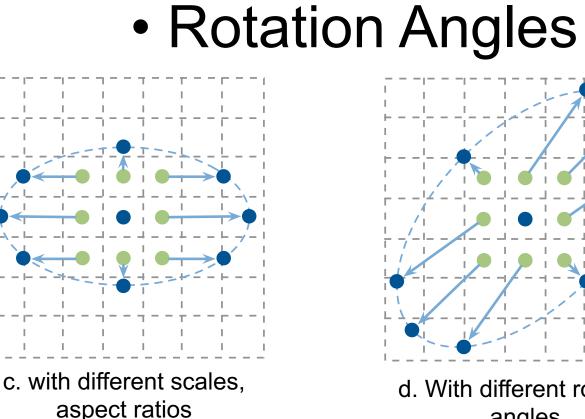
- It captures the spatial variance of objects with different:
 - Scales



a. sampling locations

for lawn





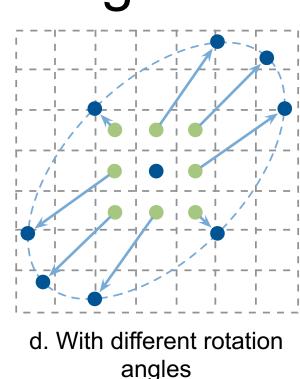
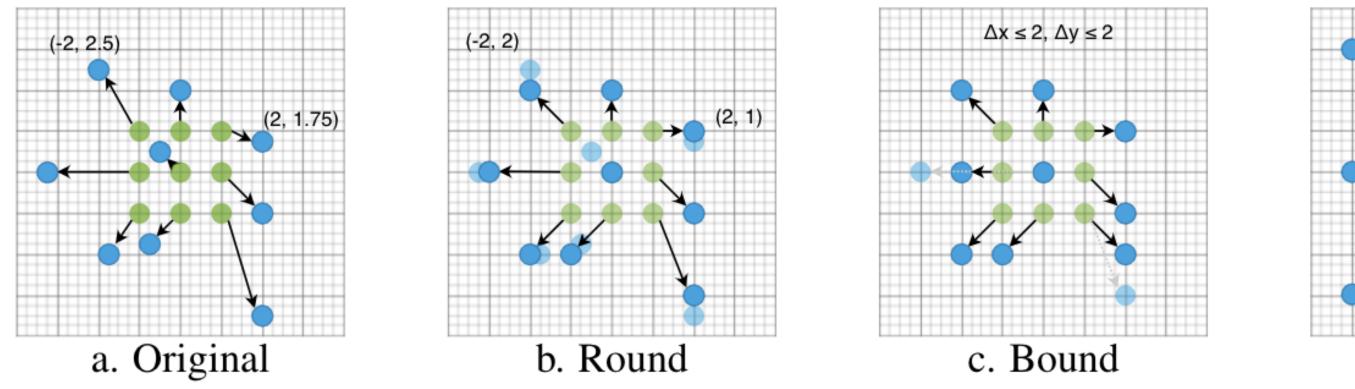
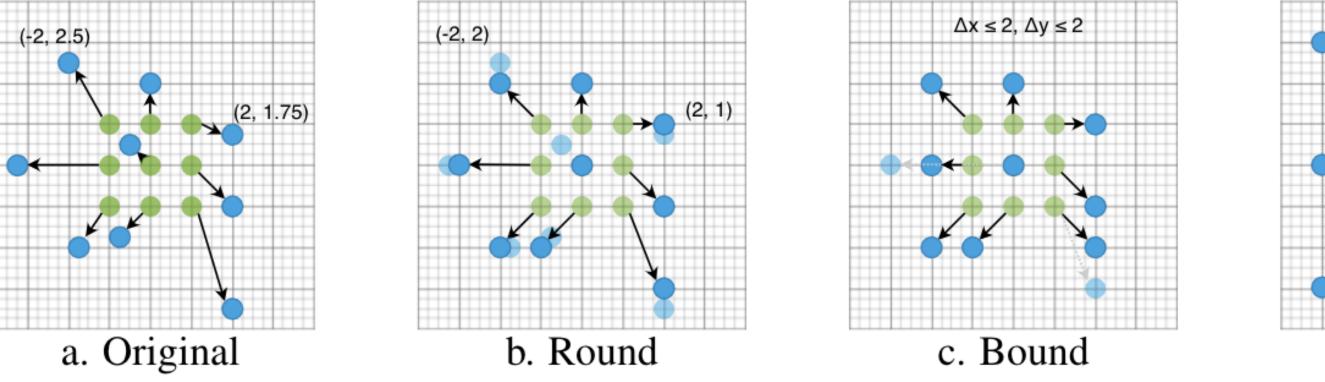
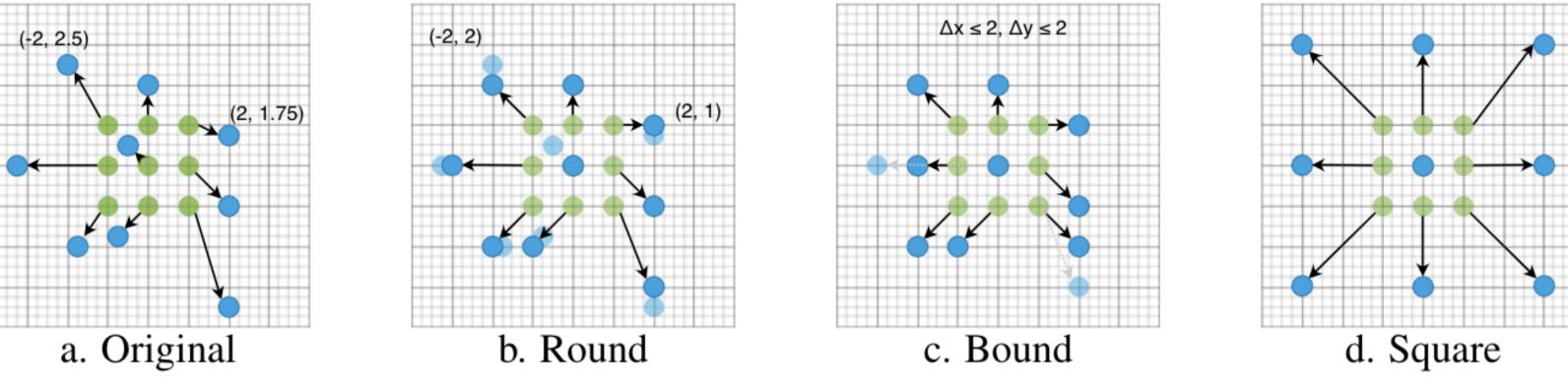


Figure 3. Deformable Convolution

Algorithm Modifications







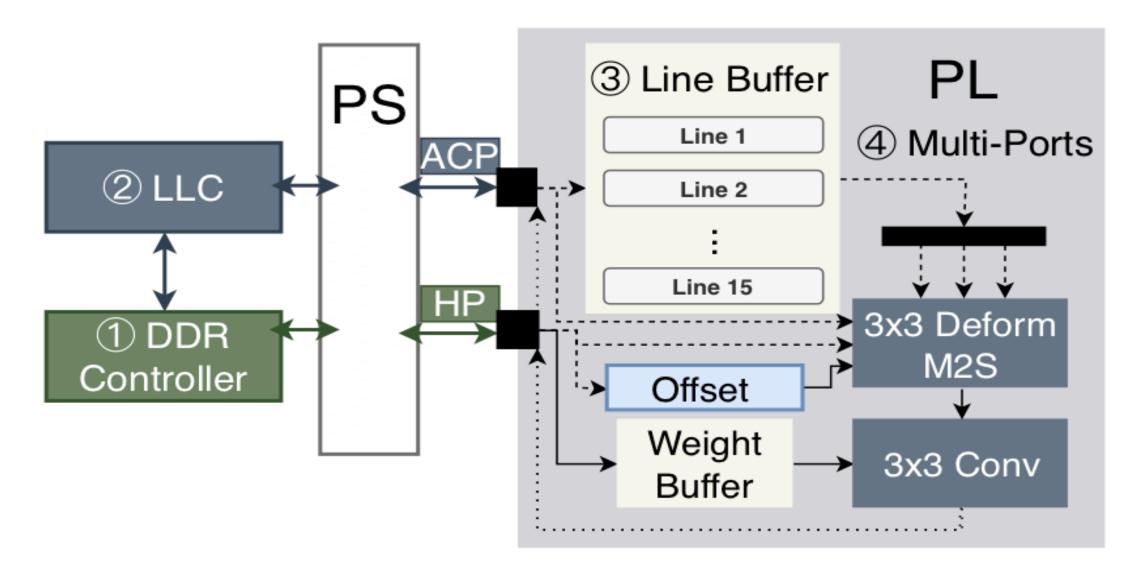


Figure 4. Major Algorithm Changes

a. **Deformable Convolution** samples inputs from variable offsets generated based on the input feature

- b. Rounded Offsets rounds the fractional offsets to integer
- c. **Bounded Range** restricts the range of offsets
- d. Rectangle Shape limits the geometry to a rectangle shape
- e. Efficient Feature Extractor uses ShuffleNetv2 as backbone
- f. **Depthwise Convolution** replaces full deformable conv with 3x3 depthwise deformable conv and 1x1 conv

Figure 5. Hardware Engine

a. **Baseline** loads input features with dynamic offsets from **DRAM** directly

b. Caching adds LLC to leverage temporal and spatial locality c. Buffering uses on-chip BRAM to buffer all inputs from

limited range

d. **Parallel Ports** increases on-chip bandwidth with constrained shape

- Results shows a 1.36× and 9.76× speedup respectively for the full and depthwise deformable conv on FPGA (Ultra96, Xilinx Zynq-MPSoC)

Table 1. Accuracy¹ with DLA as Feature Extractor

Deformable	Round	Bound	Square	mIoU↑
\checkmark				79.9
\checkmark	\checkmark			79.6
\checkmark	\checkmark	\checkmark		79.4
\checkmark	\checkmark	\checkmark	\checkmark	78.7

Table 2. Accuracy¹ with Different Feature Extractors

Feature Extractor	Operation	mIoU↑
DLA	DeformConv	79.9
ShuffleNetV2	DeformConv	70.1
ShuffleNetV2	DeformConv + Depthwise	68.0

Accuracy for Semantic Segmentation on CityScapes

- 1.2 mIoU and 2.1 mIoU loss on the overall the semantic segmentation task on CityScapes respectively for the full and depthwise deformable conv

Table 3. Codesigned Hardware	Performance Comparison
------------------------------	------------------------

Operation	Original	Deformable	Bound	Square	Without LLC		With LLC	
			(buffered)	(multi-ported)	Latency (ms)	GOPs	Latency (ms)	GOPs
	\checkmark				43.1	112.0	41.6	116.2
Full		\checkmark			59.0	81.8	42.7	113.1
3×3 Conv		\checkmark	\checkmark		43.4	111.5	41.8	115.5
		\checkmark	\checkmark	\checkmark	43.4	111.5	41.8	115.6
	\checkmark				1.9	9.7	2.0	9.6
Depthwise		\checkmark			20.5	0.9	17.8	1.1
3×3 Conv		\checkmark	\checkmark		3.0	6.2	3.4	5.5
		\checkmark	\checkmark	\checkmark	2.1	9.2	2.3	8.2

The 5th Workshop on Energy Efficient Machine Learning and Cognitive Computing @ NeurlPS 2019