Progressive Stochastic Binarization

JG|u . * . Y
UTeNRERC David Hartmann and Michael Wand Informatik

UNIVERSITAT MAINZ

‘Tnstitute of Computer Science, Johannes Gutenberg-University of Mainz, Germany

Introduction In a Nutshell

30 YOU 3‘“ YOU NEED Samples of one Average Results

stochastic Filter

Deep networks are expensive. Bulk costs:
Scalar products: Addition & multiplication in R

floating-point operations also incur substantial costs for
aligcnment/normalization

custom hardware has the potential for substantial fur-
ther cost reductions.[1]
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Method Outline:

Integer activations

Replace multiplications by stochastic gating, sampling
adjacent powers of two

High-Precision Mode

Accumulation increases the precision as needed LQW-Precigion Mode

Computational Attention:
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allowing fine-grained dynamic control of accuracy
we propose a two-stage algorithm that first computes

a rough estimate of accuracy demands and then uses Approximation :
higher precision more sparsely. . f
Example: ResNet50v2 model retains Error (relative) &

ResNet50v2

94.4% at 16 random samples and 2 Sample-Precision

08.6% at 64 samples

of the full-precision accuracy.

- First quantization scheme permitting Method
0 run-time precision control.
CKey. . Computational attention: adaptive sam- We map filters w to stochastic floats: Notes:
ontri- .
butions pling reduces costs further. - Multiplying with w uses only simple bit
FY T &
w—w:i=s-2°- (Bp T 1) operations.
Fold successive multiplications to avoid
Properties Sign s := sign(w), high-variances.
| B Exponent e := |log, |wl|], - For dynamic control of precision:
Unbiased, E [w] = w Probability p := I;;el — 1. Use multiple Bernoulli-samples,

Bounded Relative Error
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[3]. Our technique changes the number representations in- 34% s 15% s
place, without retraining and without hyperparameter tuning.
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