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Introduction
Deep networks are expensive. Bulk costs:
• Scalar products: Addition & multiplication in R
• floating-point operations also incur substantial costs for

alignment/normalization
• custom hardware has the potential for substantial fur-

ther cost reductions.[1]

Method Outline:

• Integer activations
• Replace multiplications by stochastic gating, sampling

adjacent powers of two
• Accumulation increases the precision as needed

Computational Attention:

• allowing fine-grained dynamic control of accuracy
• we propose a two-stage algorithm that first computes

a rough estimate of accuracy demands and then uses
higher precision more sparsely.

• Example: ResNet50v2 model retains

• 94.4% at 16 random samples and
• 98.6% at 64 samples

of the full-precision accuracy.

�
Key

Contri-
butions

• First quantization scheme permitting
run-time precision control.

• Computational attention: adaptive sam-
pling reduces costs further.

Properties
• Unbiased, E [w] = w

• Bounded Relative Error
• Each Sample reduces Error antiproportionally
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Closest Related Work
Quantization: ShiftCNN [2] transforms pretrained weights
into sums-of-integer-shifts. Di�erence to ours: ShiftCNN
is deterministic, the precision is fixed after deployment;
dynamic control is not possible.

Binarization: ABC-Net uses multiple scaled binary coe�-
cients to build a new number representation for weights
[3]. Our technique changes the number representations in-
place, without retraining and without hyperparameter tuning.

Alternative Network Design: Stochastic computation (SC)
uses sequences of random bits whose mean is the intended
number. Logarithmic quantization has also been used in SC,
similar in spirit to our scheme. [4] Di�erence to ours: We use
fixed-point numbers for intermediate results, only weights
are random variables.

In a Nutshell

∗ →

High-Precision Mode
Low-Precision Mode

Approximation
Error (relative)

ResNet50v2
2 Sample-Precision

Layer #6 Layer #21 Layer #43 Layer #48

Samples of one
stochastic Filter

Average Results

E [ ]

Method
We map filters w to stochastic floats:

w → w := s · 2e · (Bp + 1)

Sign s := sign(w),
Exponent e := blog2 |w|c,
Probability p := |p|

2e − 1.

Notes:

• Multiplying with w uses only simple bit
operations.

• Fold successive multiplications to avoid
high-variances.

• For dynamic control of precision:
Use multiple Bernoulli-samples,

w → s · 2e ·
(
Bn,p

n + 1
)
.

Experiments on Cifar-10 & on ImageNet
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Experiment Number Accuracy
System Top-1 [%]

baseline float32 69.7
LSQ [5] 4, 4-bit 70.9
DoReFa [1] 4, 4-bit 68.1
INQ [1] 2, ·-bit 66.6
BWN [1] 1, ·-bit 60.8
XNOR-Net [1] 1, 1-bit 51.2
ABC-Net [3] 5, 5-bit 65.0
ABC-Net [3] 1, 1-bit 42.0

baseline float32 69.7
psb5 68.2
psb4 67.1
psb2 54.7

+ pruning 25% float32 69.0
psb4 65.8

50% float32 41.5
psb4 35.3

+ discrete 4-bit psb4 66.7
p-values 2-bit psb4 62.7

1-bit psb4 31.3

+ attention random 37% psb1/5 44.7
entropy psb1/5 57.1
random 76% psb2/5 65.7
entropy + b psb2/5 67.7

= combined psb1/5 57.4
psb2/5 67.8
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