

Progressive Stochastic Binarization

David Hartmann^{*} and Michael Wand^{*} *Institute of Computer Science, Johannes Gutenberg-University of Mainz, Germany

Introduction

Deep networks are expensive. Bulk costs:

- Scalar products: Addition & multiplication in \mathbb{R}
- floating-point operations also incur substantial costs for alignment/normalization
- custom hardware has the potential for substantial further cost reductions.[1]

Method Outline:

- Integer activations

In a Nutshell

Samples of one stochastic Filter

Average Results

- Replace multiplications by stochastic gating, sampling adjacent powers of two
- Accumulation increases the precision as needed

Computational Attention:

- allowing fine-grained dynamic control of accuracy
- we propose a two-stage algorithm that first computes a rough estimate of accuracy demands and then uses higher precision more sparsely.
- **Example:** *ResNet50v2* model retains
 - 94.4% at 16 random samples and
 - 98.6% at 64 samples

of the full-precision accuracy.

Key

Contri-

butions

- First quantization scheme permitting run-time precision control.
- **Computational attention**: adaptive sampling reduces costs further.

Method

We map filters w to **stochastic floats**:

$$w \to \overline{w} := s \cdot 2^e \cdot (B_p + 1)$$

Notes:

- Multiplying with \overline{w} uses only simple bit operations.
- Fold successive multiplications to avoid

Properties

- Unbiased, $E[\overline{w}] = w$
- Bounded Relative Error
- Each Sample reduces Error antiproportionally

Sign $s := \operatorname{sign}(w)$, Exponent $e := \lfloor \log_2 |w| \rfloor$, Probability $p := \frac{|p|}{2^e} - 1$.

high-variances.

For dynamic control of precision: Use multiple Bernoulli-samples,

 $w \to s \cdot 2^e \cdot \left(\frac{B_{n,p}}{n} + 1\right).$

Experiment		Number A System T	Accuracy 0p-1 [%]
baseline LSQ [5] DoReFa [1] INQ [1] BWN [1] XNOR-Net [1] ABC-Net [3] ABC-Net [3]	4, 4-bit 4, 4-bit 2,bit 1,bit 1, 1-bit 5, 5-bit 1, 1-bit	float32	69.7 70.9 68.1 66.6 60.8 51.2 65.0 42.0
baseline		float32 psb5 psb4 psb2	69.7 68.2 67.1 54.7
+ pruning	25% 50%	float32 psb4 float32	69.0 65.8 41.5
		psb4	35.3

Quantization: ShiftCNN [2] transforms pretrained weights into sums-of-integer-shifts. Difference to ours: ShiftCNN is deterministic, the precision is fixed after deployment; dynamic control is not possible.

Binarization: ABC-Net uses multiple scaled binary coefficients to build a new number representation for weights [3]. Our technique changes the number representations inplace, without retraining and without hyperparameter tuning.

Alternative Network Design: Stochastic computation (SC) uses sequences of random bits whose mean is the intended number. Logarithmic quantization has also been used in SC, similar in spirit to our scheme. [4] Difference to ours: We use fixed-point numbers for intermediate results, only weights are random variables.

References

[1] Vivienne Sze et al. "Efficient Processing of Deep Neural Networks: A Tutorial and Survey". In: Proceedings of the IEEE 105.12 (2017), pp. 2295–2329. [2] Denis A. Gudovskiy and Luca Rigazio. "ShiftCNN: Generalized Low-Precision Architecture for Inference of Convolutional Neural Networks". In: CoRR abs/1706.02393 (2017). arXiv: 1706.02393. URL: http://arxiv.org/abs/1706.02393.

[3] Xiaofan Lin, Cong Zhao, and Wei Pan. "Towards Accurate Binary Convolutional Neural Network". In: Advances in Neural Information Processing Systems 30. Ed. by Isabelle Guyon et al. 2017, pp. 344-352. URL: http://papers.nips.cc/paper/6638-towards-accurate-binary-convolutionalneural-network.

[4] Hyeon Uk Sim and Jongeun Lee. "Log-quantized stochastic computing for memory and computation efficient DNNs". In: Proceedings of the 24th Asia and South Pacific Design Automation Conference, ASPDAC 2019, Tokyo, Japan, January 21-24, 2019. 2019, pp. 280–285.

[5] Steven K. Esser et al. "Learned Step Size Quantization". In: CoRR abs/1902.08153 (2019). arXiv: 1902.08153. URL: http://arxiv.org/abs/1902. 08153.

The **5th Workshop on Energy Efficient Machine Learning and Cognitive Computing** @ NeurIPS 2019