Efficient Deep Learning: _____ from 2D to 3D

Song Han (韩松) Assistant Professor Massachusetts Institute of Technology

songhan@mit.edu

We need AI on Edge Devices

However, edge device has low computation power

Efficient Deep Learning on the Edge

+ Efficient 3D Algorithms:

- PVCNN for efficient point-cloud recognition [NeurIPS'19, spotlight]
- TSM for efficient video recognition [ICCV'19]

+ Compression / NAS

- Deep Compression [NIPS'15, ICLR'16]
- ProxylessNAS, AMC, HAQ [ICLR'19, ECCV'18, CVPR'19, oral]
- Once-For-All (OFA) Network

From 2D to 3D Deep Learning

Training: ImageNet: 1.2M images

Inference: ResNet-50: 8G FLOPs

From 2D to 3D Deep Learning

14117

From 2D to 3D Deep Learning

Шïт

Efficient Deep Learning on the Edge

+ Efficient 3D Algorithms:

- PVCNN for efficient point-cloud recognition [NeurIPS'19, spotlight]
- TSM for efficient video recognition [ICCV'19]

+ Compression / NAS

- Deep Compression [NIPS'15, ICLR'16]
- ProxylessNAS, AMC, HAQ [ICLR'19, ECCV'18, CVPR'19, oral]
- Once-For-All (OFA) Network

3D Deep Learning

3D Part Segmentation (for Robotic Systems)

14117

3D Semantic Segmentation (for VR/AR Headsets)

3D Object Detection (for Self-Driving Cars)

Efficient 3D Deep Learning: Hardware Bottleneck

Off-chip DRAM access is much more expensive than arithmetic operation!

Sequential Memory Access

1 2 3 4 5 6 7 8

Random Memory Access

7	5	2	4	6	1	8	3
---	---	---	---	---	---	---	---

Random memory access is inefficient due to the potential bank conflicts!

Voxel-Based Models: Cubically-Growing Memory

3D ShapeNets [CVPR'15] VoxNet [IROS'15] 3D U-Net [MICCAI'16]

Point-Based Models: Sparsity Overheads

PointNet [CVPR'17] PointCNN [NeurIPS'18] DGCNN [SIGGRAPH'19]

14117

Point-Voxel Convolution (PVConv)

Point-Voxel Convolution (PVConv)

Point-Based Feature Transformation (Fine-Grained)

Point-Voxel Convolution (PVConv)

Voxel-Based Feature Aggregation (Coarse-Grained)

IIAN LAIS

Point-Voxel Convolution (PVConv)

Voxel-Based Feature Aggregation (Coarse-Grained)

Point-Based Feature Transformation (Fine-Grained)

Point-Voxel Convolution (PVConv)

Features from Voxel-Based Branch:

Features from Point-Based Branch:

IIAN LAI

Results: 3D Part Segmentation (ShapeNet)

1417

HANLAL

Results: 3D Part Segmentation (ShapeNet)

Results: 3D Part Segmentation (ShapeNet)

Results: 3D Semantic Segmentation (S3DIS)

HANLAL

Results: 3D Semantic Segmentation (S3DIS)

Results: 3D Semantic Segmentation (S3DIS)

14117

PointCNN (mIoU = **57.3**) Latency: **1129.2** ms / scene

PVCNN (mloU = **59.0**) Latency: **278.0** ms / scene

PointNet

Throughput: 12 scenes / sec

0.25 PVCNN (Ours) Throughput: 21 scenes / sec

PointNet

S3DIS Area 5 IoU = **43.0**%

0.25 PVCNN (Ours) S3DIS Area 5 IoU = **52.3**%

IIAN LAI

Results: 3D Object Detection (KITTI)

RAM

	GPU Latency	GPU Memory	Pedestrian	Cyclist	Car
F-PointNet++	105.2 ms	2.0 GB	61.6	62.4	72.8
PVCNN (efficient)	58.9 ms <mark>(1.8x)</mark>	1.4 GB (1.4x)	60.7 (-0.9)	63.6 (+1.2)	73.0 (+0.2)
PVCNN (complete)	69.6 ms (1.5x)	1.4 GB (1.4x)	64.9 (+3.3)	65.9 (+3.5)	73.1 (+0.3)
	Faster	Lower	More Accurate		

Results: 3D Object Detection (KITTI)

F-PointNet++ (10 FPS) PVCNN (17 FPS, 1.8x faster)

Point-Voxel CNN for Efficient 3D Deep Learning

2.7x measured speedup1.5x memory reduction

6.9x measured speedup 5.7x memory reduction

1.8x measured speedup1.4x memory reduction

Gold Medal in Lyft Challenge on 3D Object Detection for Autonomous Vehicles

Project Page: http://pvcnn.mit.edu GitHub: https://github.com/mit-han-lab/pvcnn

Efficient Deep Learning on the Edge

+ Efficient 3D Algorithms:

- PVCNN for efficient point-cloud recognition [NeurIPS'19, spotlight]
- TSM for efficient video recognition [ICCV'19]

+ Compression / NAS

- Deep Compression [NIPS'15, ICLR'16]
- ProxylessNAS, AMC, HAQ [ICLR'19, ECCV'18, CVPR'19, oral]
- Once-For-All (OFA) Network

Background

- Videos are growing explosively: <u>10⁵</u> hours of videos are uploaded to YouTube/day
- Efficient Video processing is essential for both Cloud and Edge (e.g., hospitals)

YouTube Uploads: > 300 Hours of Video per Minute

Overview

- Efficient spatial-temporal modeling is important for video understanding
- 2D CNN is more efficient, but it cannot handle temporal modeling
- **3D CNN** can perform joint spatial-temporal feature learning, but it is computationally expensive
- We aim to achieve 3D CNN performance at 2D complexity

Pulling something from right to left

TSM, ICCV'19

Temporal Shift Module (TSM)

- **Bi-directional** TSM shifts part of the channels along the temporal dimension to facilitate information exchange among neighboring frames
- Uni-directional TSM shifts channels from past to future for online video understanding.
- It can be inserted into off-the-shelf 2D CNN to enable temporal modeling at the cost of zero FLOPs and zero parameters

HANLAL

Latency and Throughput Speedup

• Efficiency statistics and accuracy comparison

TSM, ICCV'19

<u>Scaling Down</u>: Low-Latency Low-Power Deployment

[TSM, ICCV'19]

IIAN LAI3

Devices	Jetson Nano		Jetson TX2		Rasp.	Note8	Pixel1
	CPU	GPU	CPU	GPU	Γ		_
Latency (ms)	47.8	13.4	36.4	8.5	69.6	34.5	47.4
Power (watt)	4.8	4.5	5.6	5.8	3.8	-	-

Accelerating Video Understanding

I3D: Throughput: 6.1 video/s

TSM, ICCV'19

14117

TSM: Throughput: **77.1** video/s

12.6x higher throughput

Accelerating Video Understanding

I3D: Latency: 164.3 ms/Video

TSM: Latency: 20.7 ms/Video

TSM, ICCV'19

14117

Demo: Robust Object Detection

TSM

Mercedes S 65 AMG

1st Mercedes S 65 AMG

1st

Demo: Robust Object Detection

R-FCN

TSM

2D baseline gives false positive prediction due to the flare TSM can correct such errors with the help of temporal information

Large-Scale Distributed Training for Videos

• Speedup video training by 200x, from 2 days to 14minutes.

	Training Time	Accuracy	Peak GPU Performance	Speed-up		
1 SUMMIT Nodes (6 GPUs)	49h 50min	74.1%	93TFLOP/s	Theoretical: 128>		
128 SUMMIT Nodes (768 GPUs)	28min	74.1%	12PFLOP/s	Actual: 106x		
256 SUMMIT Nodes (1536 GPUs)	14min	74.0%	24PFLOP/s	Actual: 211x		
1 SUMMIT Node			21	11x		
256 SUMMIT Nodes	12.5	25	37.5	50		
	Lin, Gan, Han, Training Kin Ne	Time (h) etics in 15 Minutes: Large-sca eurIPS'19 workshop on System	ale Distributed Training on Videos m for ML	ŀIANI./		

HAN LA

Accuracy v.s. Batch size

• The performance of TSM model does not degrade when we scale up the mini-batch size to 12k.

Lin, Gan, Han, Training Kinetics in 15 Minutes: Large-scale Distributed Training on Videos NeurIPS'19 workshop on System for ML

Scalability v.s. Model

• TSM model achieves 1.6x and 2.9x higher training throughput compared to previous I3D models

Lin, Gan, Han, Training Kinetics in 15 Minutes: Large-scale Distributed Training on Videos NeurIPS'19 workshop on System for ML

- Each channel learns different semantics
- <u>Channel 5: Move something away</u>

- Each channel learns different semantics
- <u>Channel 162: Wiping</u>

- Each channel learns different semantics
- Channel 446: Push to left

- Each channel learns different semantics
- <u>Channel 647: Flipping Book pages</u>

Efficient Deep Learning on the Edge

+ Efficient 3D Algorithms:

- PVCNN for efficient point-cloud recognition [NeurIPS'19, spotlight]
- TSM for efficient video recognition [ICCV'19]

+ Compression / NAS

- Deep Compression [NIPS'15, ICLR'16]
- ProxylessNAS, AMC, HAQ [ICLR'19, ECCV'18, CVPR'19, oral]
- Once-For-All (OFA) Network

Pruning

Han, Pool, Tran, Dally, Learning both Weights and Connections for Efficient Neural Networks, NIPS'15

[ICLR'16]

Deep Compression

Hardware Acceleration

EIE Accelerator

Han et al [ISCA'16]

ESE Accelerator

Han et al [FPGA'17] Best Paper Award Available on AWS Marketplace

ЩiГ –

EIE: Efficient Inference Engine on Compressed Deep Neural Network ESE: Efficient Speech Recognition Engine with Sparse LSTM on FPGA

Speedup Image Classification

Before Compression 30FPS After 2.5X Compression 62FPS

Without Compression

With Compression

4 FPS

30 FPS

Accelerating Horse2zebra by GAN Compression

Original CycleGAN; FLOPs: 56.8G; FPS: 12.1; FID: 61.5

GAN Compression; FLOPs: 3.50G (16.2x); FPS: 40.0 (3.3x); FID: 53.6

Measured on NVIDIA Jetson Xavier GPU Lower FID indicates better Performance.

Pruning / Quantization / Deep Compression in Industry

- DeePhi Tech / Xilinx
- **Samsung** NPU (sparsity-aware NPU in Galaxy Note10)
- Intel NNP-I (comp./decomp. unit support for sparse weights)
- Qualcomm: AIMET (a model efficiency tool) is OS soon.
- Tensorflow / Keras

AutoML

Efficient Deep Learning on the Edge

+ Efficient 3D Algorithms:

- PVCNN for efficient point-cloud recognition [NeurIPS'19, spotlight]
- TSM for efficient video recognition [ICCV'19]

+ Compression / NAS

- Deep Compression [NIPS'15, ICLR'16]
- ProxylessNAS, AMC, HAQ [ICLR'19, ECCV'18, CVPR'19, oral]
- Once-For-All (OFA) Network

AutoML for Architecting Efficient and Specialized Neural Networks

Presented at NIPS'18 Workshop

to appear at IEEE Micro

AMC: AutoML for Model Compression

HAQ: Hardware-aware Automated Quantization

[CVPR 2019], oral

Proxyless Neural Architecture Search [ICLR 2019] [ECCV 2018]

1. ProxylessNAS: automatically architect efficient neural networks

- 2. AMC: automatic model compression (channel pruning)
- 3. HAQ: automatic quantization with mixed precision

IIAN LAI

Conventional NAS: High Cost, >\$100K!!!

[1] B Zoph, QV Le, "Neural Architecture Search with Reinforcement Learning"[2] E Real, A Aggarwal, Y Huang, QV Le, "Regularized evolution for image classifier architecture search"

ProxylessNAS: Implementation

Only one path in GPU memory. Scalable to a large design space.

Ours: Efficiently Search a Model, only \$400

ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware, ICLR'19 https://arxiv.org/pdf/1812.00332.pdf

the Search History on Different HW

The search history of finding efficient CPU model

The search history of finding efficient GPU model

https://drive.google.com/file/d/1nut1owvACc9yz1ZPqcbqoJLS2XrVPp1Q/view

IIAN LAL

ProxylessNAS: Speedup on Xilinx ZU3 (Ultra 96)

on board measured results

Without AutoML

ProxylessNAS: Speedup on Xilinx ZU9 (ZCU102)

on board measured results

ProxylessNAS: Accelerate Super Resolution

l'liiT

ProxylessNAS in Industry

Amazon: landed in <u>AutoGluon</u> [1]

Facebook: landed in <u>PytorchHub</u> [2]

O PyTorch

[1] <u>http://autogluon.mxnet.io.s3.amazonaws.com/tutorials/nas/enas_mnist.html</u>
[2] <u>https://pytorch.org/hub/pytorch_vision_proxylessnas/</u>

📮 mit-han-lab / ProxylessNAS					O Unwatch	• 60	🛨 Unstar	901	Fork 169		
<> Code 🕄 Pul	l requests 1	Actions	🗉 Wiki	C Security	Insights	🗘 Settings					
[ICLR 2019] Proxy	lessNAS: Direc	ct Neural Ar	rchitecture	Search on T	arget Task and	Hardware.	https://ar	xiv.org/abs/	/1812.0033	Edit	
automl specializ	ation hardware	e-aware ac	celeration	on-device-ai	efficient-mode	Manage topic	CS				
T 36 commits	s 🔑 1	branch	1	packages	S 0 rele	ases	🎎 3 contr	ributors	م <u>ٹ</u> ة Apac	:he-2.0	
Branch: master -	New pull reques	st			Cr	eate new file	Upload file	s Find file	Clone or	download -	
EX Lyken17 Update	README.md							Latest comr	nit 6ebb9b2 2	25 days ago	
logs E			Del	Delete proxyless_mobile_10_latency.txt					7 months ago		
proxyless_nas			rele	ase training co	ode				4 n	nonths ago	
proxyless_nas_	tensorflow		Upd	date tf_model_z	zoo.py				6 n	nonths ago	
search			add	search code					3 n	nonths ago	
training			Upo	late main.py					4 n	nonths ago	
Juitignore			pre	pare conf file f	or pytorch hubs.				2 n	nonths ago	
			pub	lic release						last year	
README.md			Upd	ate README.r	nd				2	5 days ago	
eval.py			refo	ormat with pep	8				8 n	nonths ago	
eval_tf.py			refo	ormat with pep	8				8 n	nonths ago	
hubconf.py			upd	lated relative ir	nport				2 n	nonths ago	

E README.md

Visual Wake Words Challenge using ProxylessNAS

Model Size < 250 KB Peak Memory < 250 KB

MACs < 60 M

Challenge: Deploying Deep Learning Models on Diverse Hardware Platforms and Efficiency Constraints

Galaxy S10, 2019

Plii

Diverse Mobile Platforms

Galaxy S8, 2017

Galaxy S6, 2015

Galaxy S4, 2013

• A mobile Application has to support both a 2013 phone and a 2019 phone. Often a headache!

. . .
Efficient Deep Learning on the Edge

+ Efficient 3D Algorithms:

- PVCNN for efficient point-cloud recognition [NeurIPS'19, spotlight]
- TSM for efficient video recognition [ICCV'19]

+ Compression / NAS

- Deep Compression [NIPS'15, ICLR'16]
- ProxylessNAS, AMC, HAQ [ICLR'19, ECCV'18, CVPR'19, oral]

· Once-For-All (OFA) Network

Traditional NAS Approaches: Expensive and Unscalable

 Traditional approaches <u>repeat</u> the architecture design process and <u>retrain</u> the specialized model from scratch for each case

Traditional NAS Approaches: Expensive and Unscalable

 Traditional approaches <u>repeat</u> the architecture design process and <u>retrain</u> the specialized model from scratch for each case

• The total cost grows linearly as the number of deployment scenarios increases

Traditional NAS Approaches: Expensive and Unscalable

. Excessive CO_2 emission, causing severe environmental problems

Once-for-All Network: Decouple Model Training and Architecture Design, O(1) Cost

train a **once-for-all** network

- We introduce <u>Once for All (OFA)</u> to tackle the challenge of deep learning deployment on many hardware and constraints
- In OFA, model training is decoupled from architecture search
 - A single OFA network is trained to support all architectural configurations in the search space
 - Specialized sub-networks are directly derived from the OFA network without retraining

Once-for-All Network: Decouple Model Training and Architecture Design, O(1) Cost

- We introduce <u>Once for All (OFA)</u> to tackle the challenge of deep learning deployment on many hardware and constraints
- In OFA, model training is decoupled from architecture search
 - A single OFA network is trained to support all architectural configurations in the search space
 - Specialized sub-networks are directly derived from the OFA network without retraining. O(1) cost.

Once for All: Decouple Model Training and Architecture Design, O(1) Cost

• Excessive *CO*₂ emission, causing severe environmental problems

Plii

Progressive Shrinking for Training OFA Networks

OFA: 80% Top-1 Accuracy on ImageNet Outperforms EfficientNet by a Large Margin

OFA: 80% Top-1 Accuracy on ImageNet Outperforms EfficientNet by a Large Margin

OFA Enables Fast Specialization Outperforms MobileNet-v3 by a Large Margin across Many Devices

OFA for FPGA Accelerators

✤ OFA

MobileNetV2 \diamond

OFA: Higher Arithmetic Intensity on FPGA

on board measured results

OFA for Video?

OFA for Video TSM: VideoNAS

• Experiments on <u>Kinetics</u> dataset (the mostly used, largest benchmark)

OFA for Video TSM: VideoNAS

• Experiments on <u>Kinetics</u> dataset (the mostly used, largest benchmark)

OFA for NLP?

HAT: Hardware-Aware Transformer

HANLAL

HAT: Hardware-Aware Transformer

On WMT'14 En-De, same performance, **3.7x** smaller model size; **3x, 1.6x, 1.5x** faster on Raspberry Pi, CPU, GPU, respectively than Transformer Baseline

14117

HANLAL

HAT: Hardware-Aware Transformer

		Hardware- Aware	Hetero. Layers	Latency	#Params	BLEU	GPU Hours	CO ₂ e (lbs)	Cloud Computation Cost
WMT'14 En-Fr	Transformer	×	X	23.2s	1 76M	41.2	8×30	68	\$178 - \$595
	Evolved Transformer	×	×	20.9s	175M	41.3	8×274K	626K	\$1.6M - \$5.5M
	HAT (Ours)	1	1	7.8 s	48M	41.4	8×(13+14)	61	\$159 - \$534
	HAT (Ours)	1	1	9.1s	57M	41.8	8×(13+15)	64	\$166 - \$555

IIAN LAI

HAT is Environmental Friendly

CO₂ Emission of HAT training is only **52** pounds, while that of Evolved Transformer is **626,155** pounds

HANI.

Plii

HAT is Quantization Friendly

BLEU Model Size Reduction

IIAN LAI

Transformer Float32	41.2	705MB	_
HAT Float32	41.8	227MB	$3 \times$
HAT 8 bits	41.9	57MB	12 ×
HAT 4 bits	41.1	28MB	$25 \times$

NeurIPS MicroNet Challenge (NLP Track)

	Sparsity	Quantization	Test Perplexity	Score
Model 1	42.12%	9 bits	34.95	0.0482
Model 2	40.12%	9 bits	34.65	0.0485
Model 3	33.85%	8 bits	34.95	0.0475

Winning 1st place in the NeurIPS MicroNet Challenge

Resource is Limited.

We need Once-For-All.

Efficient Deep Learning on the Edge

+ Efficient 3D Algorithms:

- PVCNN for efficient point-cloud recognition [NeurIPS'19, spotlight]
- TSM for efficient video recognition [ICCV'19]

+ Compression / NAS

- Deep Compression [NIPS'15, ICLR'16]
- ProxylessNAS, AMC, HAQ [ICLR'19, ECCV'18, CVPR'19, oral]
- Once-For-All (OFA) Network

Make AI Efficient

Any Human Resource

Any Computational Resource

<u>hanlab.mit.edu</u> <u>github.com/mit-han-lab</u>