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We need AI on Edge Devices

However, edge device has low computation power 
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Efficient Deep Learning on the Edge

✦ Efficient 3D Algorithms: 
• PVCNN for efficient point-cloud recognition [NeurIPS’19, spotlight] 
• TSM for efficient video recognition [ICCV’19] 

✦ Compression / NAS
• Deep Compression [NIPS’15, ICLR’16] 
• ProxylessNAS, AMC, HAQ [ICLR’19, ECCV’18, CVPR’19, oral] 
• Once-For-All (OFA) Network



From 2D to 3D Deep Learning
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Training:
ImageNet: 1.2M images 
Kinetics: 63M frames, 50x 

Inference: 
ResNet-50: 8G FLOPs 
ResNet-50-I3D: 65G FLOPs, 8x
 

From 2D to 3D Deep Learning



Efficient Deep Learning on the Edge

✦ Efficient 3D Algorithms: 
• PVCNN for efficient point-cloud recognition [NeurIPS’19, spotlight] 
• TSM for efficient video recognition [ICCV’19] 

✦ Compression / NAS
• Deep Compression [NIPS’15, ICLR’16] 
• ProxylessNAS, AMC, HAQ [ICLR’19, ECCV’18, CVPR’19, oral] 
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3D Semantic Segmentation
(for VR/AR Headsets)

3D Object Detection
(for Self-Driving Cars)

3D Part Segmentation
(for Robotic Systems)

3D Deep Learning
[PVCNN, NeurIPS’19]



Efficient 3D Deep Learning: Hardware Bottleneck

Off-chip DRAM access is much more 
expensive than arithmetic operation!

Random memory access is inefficient 
due to the potential bank conflicts!

Mult and Add SRAM Memory DRAM Memory
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Bandwidth (GB/s)

20x slower

Random Memory Access
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Sequential Memory Access
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[PVCNN, NeurIPS’19]



Voxel-Based Models: Cubically-Growing Memory
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[PVCNN, NeurIPS’19]



Irregular Access Dynamic Kernel Actual Computation
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Point-Based Models: Sparsity Overheads

PointCNN [NeurIPS’18]
PointNet [CVPR’17]

DGCNN [SIGGRAPH’19]
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[PVCNN, NeurIPS’19]



Point-Voxel Convolution (PVConv)

Devoxelize

Normalize

Voxelize Convolve

Fuse

Multi-Layer Perceptron

[PVCNN, NeurIPS’19]



Point-Voxel Convolution (PVConv)

DevoxelizeVoxelize Convolve

Point-Based Feature Transformation (Fine-Grained)

Multi-Layer Perceptron

Normalize Fuse

[PVCNN, NeurIPS’19]



Point-Voxel Convolution (PVConv)

Devoxelize

Normalize

Voxelize Convolve

Fuse

Voxel-Based Feature Aggregation (Coarse-Grained)

Multi-Layer Perceptron

[PVCNN, NeurIPS’19]



Point-Voxel Convolution (PVConv)

Devoxelize

Normalize

Voxelize Convolve

Fuse

Point-Based Feature Transformation (Fine-Grained)

Voxel-Based Feature Aggregation (Coarse-Grained)

Multi-Layer Perceptron

[PVCNN, NeurIPS’19]



Point-Voxel Convolution (PVConv)

Features from Voxel-Based Branch:

Features from Point-Based Branch:

[PVCNN, NeurIPS’19]



Results: 3D Part Segmentation (ShapeNet)

PVCNN
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Results: 3D Part Segmentation (ShapeNet)

PVCNN
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2.7x speedup 1.5x reduction

[PVCNN, NeurIPS’19]
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Results: 3D Part Segmentation (ShapeNet)
[PVCNN, NeurIPS’19]



Results: 3D Semantic Segmentation (S3DIS)
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Results: 3D Semantic Segmentation (S3DIS)
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6.9x speedup 5.7x reduction
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Input Scene PointNet PVCNN
(1.8x faster)

Ground Truth

Results: 3D Semantic Segmentation (S3DIS)
[PVCNN, NeurIPS’19]









Results: 3D Object Detection (KITTI)

GPU Latency GPU Memory Pedestrian Cyclist Car

F-PointNet++ 105.2 ms 2.0 GB 61.6 62.4 72.8

PVCNN
(efficient)

58.9 ms
(1.8x)

1.4 GB
(1.4x)

60.7
(-0.9)

63.6
(+1.2)

73.0
(+0.2)

PVCNN
(complete)

69.6 ms

(1.5x)
1.4 GB
(1.4x)

64.9
(+3.3)

65.9
(+3.5)

73.1
(+0.3)

Faster Lower More Accurate

[PVCNN, NeurIPS’19]



F-PointNet++
(10 FPS) 

PVCNN
(17 FPS, 1.8x faster)

Results: 3D Object Detection (KITTI)
[PVCNN, NeurIPS’19]



GitHub: https://github.com/mit-han-lab/pvcnn
Project Page: http://pvcnn.mit.edu 

Point-Voxel CNN 
for Efficient 3D Deep Learning

2.7x measured speedup
1.5x memory reduction

6.9x measured speedup
5.7x memory reduction

1.8x measured speedup
1.4x memory reduction

Gold Medal in Lyft Challenge on 3D Object Detection for Autonomous Vehicles

[PVCNN, NeurIPS’19]

https://github.com/mit-han-lab/pvcnn
http://pvcnn.mit.edu
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Background
• Videos are growing explosively: 105 hours of videos are uploaded to YouTube/day
• Efficient Video processing is essential for both Cloud and Edge (e.g., hospitals)

T

[TSM, ICCV’19]
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Overview
• Efficient spatial-temporal modeling is important for video understanding
• 2D CNN is more efficient, but it cannot handle temporal modeling
• 3D CNN can perform joint spatial-temporal feature learning, but it is 

computationally expensive
• We aim to achieve 3D CNN performance at 2D complexity

TSM, ICCV’19

[TSM, ICCV’19]
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Temporal Shift Module (TSM)

• Bi-directional TSM shifts part of the channels along the temporal 
dimension to facilitate information exchange among neighboring frames

• Uni-directional TSM shifts channels from past to future for online video 
understanding.

• It can be inserted into off-the-shelf 2D CNN to enable temporal modeling at 
the cost of zero FLOPs and zero parameters

[TSM, ICCV’19]



Latency and Throughput Speedup

• Efficiency statistics and accuracy comparison

TSM, ICCV’19

[TSM, ICCV’19]



Scaling Down: Low-Latency Low-Power 
Deployment

35

LED Bulb Level!

[TSM, ICCV’19]



Accelerating Video Understanding

I3D: 
Throughput: 6.1 video/s    

TSM: 
Throughput: 77.1 video/s    

12.6x higher throughput

TSM, ICCV’19

[TSM, ICCV’19]



I3D: 
Latency: 164.3 ms/Video    

TSM: 
Latency: 20.7 ms/Video

Speed-up: 8x

Accelerating Video Understanding

TSM, ICCV’19

[TSM, ICCV’19]



https://youtu.be/0T6u7S_gq-4

https://youtu.be/0T6u7S_gq-4
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Demo: Robust Object Detection
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● Speedup video training by 200x, from 2 days to 14minutes.

Training Time Accuracy Peak GPU 
Performance Speed-up

1 SUMMIT Nodes  
(6 GPUs) 49h 50min 74.1% 93TFLOP/s  Theoretical: 128x


 Actual: 106x


 Theoretical: 256x

 Actual: 211x

128 SUMMIT Nodes  
(768 GPUs) 28min 74.1% 12PFLOP/s

256 SUMMIT Nodes  
(1536 GPUs) 14min 74.0% 24PFLOP/s

0 12.5 25 37.5 50
Time (h)

1 SUMMIT Node

256 SUMMIT Nodes

211x

Large-Scale Distributed Training for Videos

Lin, Gan, Han, Training Kinetics in 15 Minutes: Large-scale Distributed Training on Videos

NeurIPS’19 workshop on System for ML

[Kinetics 15min, NeurIPS’19 W]



● The performance of TSM model does not degrade when we scale up the mini-batch 
size to 12k. 

211x

Accuracy v.s. Batch size

Lin, Gan, Han, Training Kinetics in 15 Minutes: Large-scale Distributed Training on Videos

NeurIPS’19 workshop on System for ML

[Kinetics 15min, NeurIPS’19 W]



Scalability v.s. Model
● TSM model achieves 1.6x and 2.9x higher training throughput compared to 

previous I3D models

Lin, Gan, Han, Training Kinetics in 15 Minutes: Large-scale Distributed Training on Videos

NeurIPS’19 workshop on System for ML

[Kinetics 15min, NeurIPS’19 W]



Overview

0
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500

Jun '07 May '19

Hours of video uploaded per minute

Training Kinetics in 15 Minutes: 
Large-scale Distributed Training on Videos

Ji Lin1        Chuang Gan2        Song Han1 

1 MIT    2 MIT-IBM Watson AI Lab

MLSys WorkshopProject Page

• Video analytics (3D CNN)  is heavy 
• Computation: 10x larger than image. 
• Data I/O: 8-32x more data per sample. 
• Networking: 1.5-3x more parameters. 

• We propose Temporal Shift Module 
(TSM) to achieve 3D performance at 2D 
Cost.

• TSM scales up to 1.5k GPUs, training Kinetics in 15min. 
• TSM scales down, running 74fps on Jetson Nano.
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How to Design Scalable Video Models?

Temporal Modeling Unit (TSM vs 3D Conv) →1, 2

Backbone Topology →3

1. Computation efficiency: fewer FLOPs, higher hardware utilization 
2. Networking efficiency: fewer parameters → fewer gradients → 

less networking bandwidth 
3. Data loading efficiency: fewer parameters → less disk I/O

Analyzing Training Efficiency Scale Down: Edge Deployment
• Analyzing on AWS 

(a) training throughput (b) data I/O (c) Scalability/networking

• MobileNetV2 + online TSM

• Compiled with TVM

• Near zero overhead!

LED Bulb 
Level!

49h 50m  14m 13s

• 1,536 GPUs, Batch size: 12,288 videos/98,304 frames 
• Achieving >80% scalability 
• Training time (Kinetics): 2 days → 15 minutes

Scale Up: TSM on Summit Supercomputer

• Better scalability than 3D CNN 
• 2-3x larger training throughput on same hardware • Accuracy v.s. batch size. No degradation at 12k

Summit: 6*V100/node Training curves (12k)

Our Choice

tsm-hanlab.mit.edu



TSM Dissection: Spatial-Temporal Localization

46

• Each channel learns different semantics
• Channel 5: Move something away



TSM Dissection: Spatial-Temporal Localization
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• Each channel learns different semantics
• Channel 162: Wiping



TSM Dissection: Spatial-Temporal Localization

48

• Each channel learns different semantics
• Channel 446: Push to left



TSM Dissection: Spatial-Temporal Localization

49

• Each channel learns different semantics
• Channel 647: Flipping Book pages



Efficient Deep Learning on the Edge

✦ Efficient 3D Algorithms: 
• PVCNN for efficient point-cloud recognition [NeurIPS’19, spotlight] 
• TSM for efficient video recognition [ICCV’19] 

✦ Compression / NAS
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Pruning

Han, Pool, Tran, Dally, Learning both Weights and Connections for Efficient Neural Networks, NIPS’15
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7UDLQ�:HLJKWV

Figure 2: Three-Step Training Pipeline.
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Figure 3: Synapses and neurons before and after
pruning.

3 Learning Connections in Addition to Weights

Our pruning method employs a three-step process, as illustrated in Figure 2, which begins by learning
the connectivity via normal network training. Unlike conventional training, however, we are not
learning the final values of the weights, but rather we are learning which connections are important.

The second step is to prune the low-weight connections. All connections with weights below a
threshold are removed from the network — converting a dense network into a sparse network, as
shown in Figure 3. The final step retrains the network to learn the final weights for the remaining
sparse connections. This step is critical. If the pruned network is used without retraining, accuracy is
significantly impacted.

3.1 Regularization

Choosing the correct regularization impacts the performance of pruning and retraining. L1 regulariza-
tion penalizes non-zero parameters resulting in more parameters near zero. This gives better accuracy
after pruning, but before retraining. However, the remaining connections are not as good as with L2
regularization, resulting in lower accuracy after retraining. Overall, L2 regularization gives the best
pruning results. This is further discussed in experiment section.

3.2 Dropout Ratio Adjustment

Dropout [23] is widely used to prevent over-fitting, and this also applies to retraining. During
retraining, however, the dropout ratio must be adjusted to account for the change in model capacity.
In dropout, each parameter is probabilistically dropped during training, but will come back during
inference. In pruning, parameters are dropped forever after pruning and have no chance to come back
during both training and inference. As the parameters get sparse, the classifier will select the most
informative predictors and thus have much less prediction variance, which reduces over-fitting. As
pruning already reduced model capacity, the retraining dropout ratio should be smaller.

Quantitatively, let Ci be the number of connections in layer i, Cio for the original network, Cir for
the network after retraining, Ni be the number of neurons in layer i. Since dropout works on neurons,
and Ci varies quadratically with Ni, according to Equation 1 thus the dropout ratio after pruning the
parameters should follow Equation 2, where Do represent the original dropout rate, Dr represent the
dropout rate during retraining.

Ci = NiNi�1 (1) Dr = Do

r
Cir

Cio
(2)

3.3 Local Pruning and Parameter Co-adaptation

During retraining, it is better to retain the weights from the initial training phase for the connections
that survived pruning than it is to re-initialize the pruned layers. CNNs contain fragile co-adapted
features [24]: gradient descent is able to find a good solution when the network is initially trained,
but not after re-initializing some layers and retraining them. So when we retrain the pruned layers,
we should keep the surviving parameters instead of re-initializing them.

3

[NIPS’15]

https://arxiv.org/abs/1506.02626


Deep Compression
[ICLR’16]



EIE Accelerator 
Han et al [ISCA’16]

Available on AWS Marketplace

ESE Accelerator 
Han et al [FPGA’17]
Best Paper Award

EIE: Efficient Inference Engine on Compressed Deep Neural Network

Song Han⇤ Xingyu Liu⇤ Huizi Mao⇤ Jing Pu⇤ Ardavan Pedram⇤

Mark A. Horowitz⇤ William J. Dally⇤†

⇤Stanford University, †NVIDIA
{songhan,xyl,huizi,jingpu,perdavan,horowitz,dally}@stanford.edu

Abstract—State-of-the-art deep neural networks (DNNs)
have hundreds of millions of connections and are both compu-
tationally and memory intensive, making them difficult to de-
ploy on embedded systems with limited hardware resources and
power budgets. While custom hardware helps the computation,
fetching weights from DRAM is two orders of magnitude more
expensive than ALU operations, and dominates the required
power.

Previously proposed ‘Deep Compression’ makes it possible
to fit large DNNs (AlexNet and VGGNet) fully in on-chip
SRAM. This compression is achieved by pruning the redundant
connections and having multiple connections share the same
weight. We propose an energy efficient inference engine (EIE)
that performs inference on this compressed network model and
accelerates the resulting sparse matrix-vector multiplication
with weight sharing. Going from DRAM to SRAM gives EIE
120⇥ energy saving; Exploiting sparsity saves 10⇥; Weight
sharing gives 8⇥; Skipping zero activations from ReLU saves
another 3⇥. Evaluated on nine DNN benchmarks, EIE is
189⇥ and 13⇥ faster when compared to CPU and GPU
implementations of the same DNN without compression. EIE
has a processing power of 102 GOPS/s working directly on
a compressed network, corresponding to 3 TOPS/s on an
uncompressed network, and processes FC layers of AlexNet at
1.88⇥104 frames/sec with a power dissipation of only 600mW.
It is 24,000⇥ and 3,400⇥ more energy efficient than a CPU
and GPU respectively. Compared with DaDianNao, EIE has
2.9⇥, 19⇥ and 3⇥ better throughput, energy efficiency and
area efficiency.

Keywords-Deep Learning; Model Compression; Hardware
Acceleration; Algorithm-Hardware co-Design; ASIC;

I. INTRODUCTION

Neural networks have become ubiquitous in applications
including computer vision [1]–[3], speech recognition [4],
and natural language processing [4]. In 1998, Lecun et
al. classified handwritten digits with less than 1M parame-
ters [5], while in 2012, Krizhevsky et al. won the ImageNet
competition with 60M parameters [1]. Deepface classified
human faces with 120M parameters [6]. Neural Talk [7]
automatically converts image to natural language with 130M
CNN parameters and 100M RNN parameters. Coates et
al. scaled up a network to 10 billion parameters on HPC
systems [8].

Large DNN models are very powerful but consume large
amounts of energy because the model must be stored in
external DRAM, and fetched every time for each image,

4-bit	  
Relative	Index

4-bit	  
Virtual	weight

16-bit		
Real	weight

16-bit	  
Absolute	Index

Encoded	Weight	
Relative	Index	
Sparse	Format	

ALU

Mem

Compressed	
DNN	Model Weight		

Look-up

Index		
Accum

Prediction

Input	
Image

Result

Figure 1. Efficient inference engine that works on the compressed deep
neural network model for machine learning applications.

word, or speech sample. For embedded mobile applications,
these resource demands become prohibitive. Table I shows
the energy cost of basic arithmetic and memory operations
in a 45nm CMOS process [9]. It shows that the total energy
is dominated by the required memory access if there is
no data reuse. The energy cost per fetch ranges from 5pJ
for 32b coefficients in on-chip SRAM to 640pJ for 32b
coefficients in off-chip LPDDR2 DRAM. Large networks do
not fit in on-chip storage and hence require the more costly
DRAM accesses. Running a 1G connection neural network,
for example, at 20Hz would require (20Hz)(1G)(640pJ) =
12.8W just for DRAM accesses, which is well beyond the
power envelope of a typical mobile device.

Previous work has used specialized hardware to accelerate
DNNs [10]–[12]. However, these efforts focus on acceler-
ating dense, uncompressed models - limiting their utility
to small models or to cases where the high energy cost
of external DRAM access can be tolerated. Without model
compression, it is only possible to fit very small neural
networks, such as Lenet-5, in on-chip SRAM [12].

Efficient implementation of convolutional layers in CNN
has been intensively studied, as its data reuse and manipu-
lation is quite suitable for customized hardware [10]–[15].
However, it has been found that fully-connected (FC) layers,
widely used in RNN and LSTMs, are bandwidth limited
on large networks [14]. Unlike CONV layers, there is no
parameter reuse in FC layers. Data batching has become
an efficient solution when training networks on CPUs or
GPUs, however, it is unsuitable for real-time applications
with latency requirements.

Network compression via pruning and weight sharing
[16] makes it possible to fit modern networks such as
AlexNet (60M parameters, 240MB), and VGG-16 (130M
parameters, 520MB) in on-chip SRAM. Processing these
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Hardware Acceleration

EIE: Efficient Inference Engine on Compressed Deep Neural Network
ESE: Efficient Speech Recognition Engine with Sparse LSTM on FPGA

https://arxiv.org/pdf/1602.01528.pdf
https://arxiv.org/pdf/1612.00694.pdf


Speedup Image Classification
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Pruning / Quantization / Deep Compression in Industry

• DeePhi Tech / Xilinx  

• Samsung NPU (sparsity-aware NPU in Galaxy Note10) 

• Intel NNP-I (comp./decomp. unit support for sparse weights) 

• Qualcomm: AIMET (a model efficiency tool) is OS soon.  

• Tensorflow / Keras



AutoML

Machine learning expert 
Hardware expert

Non expert Hardware-Centric 
AutoML

+
Design efficient neural networks

Design efficient AI hardware

AutoML

DeployTraining



Efficient Deep Learning on the Edge

✦ Efficient 3D Algorithms: 
• PVCNN for efficient point-cloud recognition [NeurIPS’19, spotlight] 
• TSM for efficient video recognition [ICCV’19] 

✦ Compression / NAS
• Deep Compression [NIPS’15, ICLR’16] 
• ProxylessNAS, AMC, HAQ [ICLR’19, ECCV’18, CVPR’19, oral]

• Once-For-All (OFA) Network



AMC: AutoML for Model Compression
[ECCV 2018]

Proxyless Neural Architecture Search

HAQ: Hardware-aware  
Automated Quantization

[CVPR 2019], oral

[ICLR 2019]

1. ProxylessNAS: automatically architect efficient neural networks 
2.  AMC: automatic model compression (channel pruning) 
3.  HAQ: automatic quantization with mixed precision

AutoML for Architecting Efficient and  
Specialized 
Neural Networks 
Presented at NIPS’18 Workshop  
to appear at IEEE Micro

https://ieeexplore.ieee.org/document/8897011


Conventional NAS: High Cost, >$100K!!! 
                                       

[1] B Zoph, QV Le, "Neural Architecture Search with Reinforcement Learning”
[2] E Real, A Aggarwal, Y Huang, QV Le, “Regularized evolution for image classifier architecture search”

1

10
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1000

10000

Search Cost: GPU Hours (h)

Normal Train Conventional NAS [1,2]

100 GPU hours

>48,000 GPU hours! 
~$100,000 Cloud Compute Cost 
~11,000 pounds of CO2

CO2 Emission: 

human year: 11,000 pounds 
SF-NY/per: 2,000 pounds



ProxylessNAS: Implementation

ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware, ICLR’19 
https://arxiv.org/pdf/1812.00332.pdf

Only one path in GPU memory. Scalable to a large design space.

https://arxiv.org/pdf/1812.00332.pdf


ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware, ICLR’19 
https://arxiv.org/pdf/1812.00332.pdf

Ours: Efficiently Search a Model, only $400

1

10

100

1000

10000

Search Cost: GPU Hours (h)

Normal Train Conventional NAS
ProxylessNAS

200x

>48,000 GPU hours! 
~$100,000 Cloud Compute Cost 
~11,000 pound CO2:5 trips from SF-NY

>200 GPU hours 
~$400 Cloud Compute Cost 
~47 pound CO2: 2 human days

https://arxiv.org/pdf/1812.00332.pdf


(1) The history of finding efficient Mobile model

https://drive.google.com/file/d/1nut1owvACc9yz1ZPqcbqoJLS2XrVPp1Q/view

Learning both the weight and architecture

The search history of finding efficient CPU model

the Search History on Different HW

The search history of finding efficient GPU model

https://drive.google.com/file/d/1nut1owvACc9yz1ZPqcbqoJLS2XrVPp1Q/view
https://drive.google.com/file/d/1nut1owvACc9yz1ZPqcbqoJLS2XrVPp1Q/view


on board measured results

ProxylessNAS: Speedup on Xilinx ZU3 (Ultra 96)  



on board measured results

ProxylessNAS: Speedup on Xilinx ZU9 (ZCU102)  



ProxylessNAS: Accelerate Super Resolution

CARN 
[ECCV’18] 

==> 

AutoML 
==>

180=>720



ProxylessNAS in Industry

● Amazon: landed in AutoGluon [1] 
 

● Facebook: landed in PytorchHub [2] 
 
 
 
 
 

[1] http://autogluon.mxnet.io.s3.amazonaws.com/tutorials/nas/enas_mnist.html 
[2] https://pytorch.org/hub/pytorch_vision_proxylessnas/

http://autogluon.mxnet.io.s3.amazonaws.com/tutorials/nas/enas_mnist.html
https://pytorch.org/hub/pytorch_vision_proxylessnas/
http://autogluon.mxnet.io.s3.amazonaws.com/tutorials/nas/enas_mnist.html
https://pytorch.org/hub/pytorch_vision_proxylessnas/




Params (M) MACs (M)

Visual Wake Words Challenge using ProxylessNAS

MAC < 60M

Efficient mobile CNN model

Peak Memory Usage < 250KB 

Model Size < 250KB Wake or Sleep

camera





Challenge: Deploying Deep Learning Models on  
Diverse Hardware Platforms and Efficiency Constraints  

72

Diverse Mobile Platforms

…

Diverse Efficiency Constraints

battery/energy workloads/latency application

• A mobile Application has to support both a 2013 phone and a 2019 phone. Often a headache! 

…

Galaxy S6, 2015 Galaxy S4, 2013Galaxy S8, 2017Galaxy S10, 2019



Efficient Deep Learning on the Edge

✦ Efficient 3D Algorithms: 
• PVCNN for efficient point-cloud recognition [NeurIPS’19, spotlight] 
• TSM for efficient video recognition [ICCV’19] 

✦ Compression / NAS
• Deep Compression [NIPS’15, ICLR’16] 
• ProxylessNAS, AMC, HAQ [ICLR’19, ECCV’18, CVPR’19, oral] 
• Once-For-All (OFA) Network



Traditional NAS Approaches: Expensive and Unscalable
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• Traditional approaches repeat the architecture design process and retrain the specialized model from 
scratch for each case



75

• Traditional approaches repeat the architecture design process and retrain the specialized model from 
scratch for each case

• The total cost grows linearly as the number of deployment scenarios increases

Traditional NAS Approaches: Expensive and Unscalable



Traditional NAS Approaches: Expensive and Unscalable
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• Excessive  emission, causing severe environmental problemsCO2

CO2 emission (lbs)

9-car lifetime!3.5-car lifetime!



Once-for-All Network:  
Decouple Model Training and Architecture Design, O(1) Cost

77

• We introduce Once for All (OFA) to tackle the challenge of deep learning deployment on many hardware and constraints
• In OFA, model training is decoupled from architecture search

• A single OFA network is trained to support all architectural configurations in the search space
• Specialized sub-networks are directly derived from the OFA network without retraining



Once-for-All Network:  
Decouple Model Training and Architecture Design, O(1) Cost
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• We introduce Once for All (OFA) to tackle the challenge of deep learning deployment on many hardware and constraints
• In OFA, model training is decoupled from architecture search

• A single OFA network is trained to support all architectural configurations in the search space
• Specialized sub-networks are directly derived from the OFA network without retraining. O(1) cost.



Once for All: Decouple Model Training and 
Architecture Design, O(1) Cost

79

CO2 emission (lbs)

• Excessive  emission, causing severe environmental problemsCO2

9 car-lifetime!3.5 car-lifetime!

only 10 human-day



Progressive Shrinking for Training OFA Networks
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OFA: 80% Top-1 Accuracy on ImageNet 
Outperforms EfficientNet by a Large Margin
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OFA: 80% Top-1 Accuracy on ImageNet 
Outperforms EfficientNet by a Large Margin
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EfficientNet: initial learning rate 0.256 that decays by 0.97 every 2.4 epochs 



OFA Enables Fast Specialization
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Outperforms MobileNet-v3 by a Large Margin across Many Devices



OFA for FPGA Accelerators 
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OFA: Higher Arithmetic Intensity on FPGA
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37.5

50.0

MobileNet-v2 MnasNet Ours

on board measured results



OFA for Video?



• Experiments on Kinetics dataset (the mostly used, largest benchmark)
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Computation (GFLOPs)
0 10 20 30 40

VideoNAS TSM I3D

VNAS-large

VNAS-small

MbV2-TSM

R50-TSM

R50-I3D

OFA for Video TSM: VideoNAS
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• Experiments on Kinetics dataset (the mostly used, largest benchmark)


To
p-

1 
Ac

cu
ra

cy
 (%

)

69

70

71

72

73

74

75

Computation (GFLOPs)
0 10 20 30 40

VideoNAS TSM I3D

Same Acc.
VNAS-large

VNAS-small

MbV2-TSM

R50-TSM

R50-I3D

7x less computation

Same Comp. 
+3.0% Acc.

OFA for Video TSM: VideoNAS
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OFA for NLP?



HAT: Hardware-Aware Transformer
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42

3 8 13 18 23
33.2

33.8

34.4

35.0

40 81 122 162 203

Intel CPU latency (ms)

HAT (Ours)

3× Faster 
3.7× Smaller

Transformer-Base

Transformer-Big

Raspberry Pi ARM CPU latency (s) Nvidia GPU latency (ms)

1.6× Faster

Layer Number Scaling of Transformer (Vaswani et al.) Dimension Scaling of Transformer (Vaswani et al.)

Transformer-Base

Transformer-Big

Transformer-Big

1.91.6 1.5

Dimension scaling 
can hardly reduce latency 
on Nvidia GPU

Transformer-Base

1.5× Faster

WMT ’14 En-Fr

3.0× Faster 
3.6× Smaller

Transformer-Base

Transformer-Big

Raspberry Pi ARM CPU latency (s) Intel CPU latency (ms)

WMT ’14 En-Fr

Transformer-Base

Transformer-Big

1.1

2.2× Faster

1.3

IWSLT ’14 De-En

1.8× Faster
Transformer-Base

Nvidia GPU latency (ms)

WMT ’14 En-De WMT ’14 En-De WMT ’14 En-De

On WMT’14 En-De, same performance, 3.7x smaller model size;  
3x, 1.6x, 1.5x faster on Raspberry Pi, CPU, GPU, respectively than Transformer Baseline

HAT: Hardware-Aware Transformer



HAT: Hardware-Aware Transformer



HAT is Environmental Friendly

CO2 Emission of HAT training is only 52 pounds, while that of 
Evolved Transformer is 626,155 pounds

Table 1

Human Life 11023 5000

American Life 36156

US car including 
fuel

126000

Evolved 
Transformer

626155

HAT (Ours) 6000

626,155

126,000

36,156

11,023Human Life 
(Avg. 1 year)

American Life 
(Avg. 1 year)
US Car w/ Fuel 
(Avg. 1 lifetime)

Evolved 
Transformer

HAT (Ours) 52 12041×

0 175K 350K 525K 700K
CO2 Emission (lbs)



HAT is Quantization Friendly



NeurIPS MicroNet Challenge (NLP Track)

Sparsity Quantization Test Perplexity Score

Model 1 42.12% 9 bits 34.95 0.0482

Model 2 40.12% 9 bits 34.65 0.0485

Model 3 33.85% 8 bits 34.95 0.0475

Winning 1st place in the NeurIPS MicroNet Challenge



Resource is Limited.  

We need Once-For-All.



Efficient Deep Learning on the Edge

✦ Efficient 3D Algorithms: 
• PVCNN for efficient point-cloud recognition [NeurIPS’19, spotlight] 
• TSM for efficient video recognition [ICCV’19] 

✦ Compression / NAS
• Deep Compression [NIPS’15, ICLR’16] 
• ProxylessNAS, AMC, HAQ [ICLR’19, ECCV’18, CVPR’19, oral] 
• Once-For-All (OFA) Network



Any Human Resource 

Any Computational Resource

Make AI Efficient

hanlab.mit.edu 
github.com/mit-han-lab 

http://hanlab.mit.edu
http://github.com/mit-han-lab

