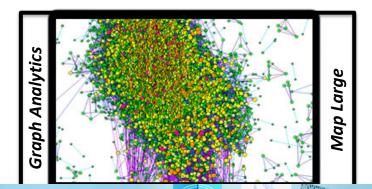
EMC² Workshop @ ISCA

June 23, 2019

Machine Learning @ Scale Understanding Inference at the Edge

Carole-Jean Wu AI INFRA RESEARCH, FACEBOOK

Mobile Industry News

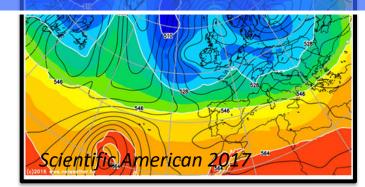


Every minute,

YELP

REVIEWS.

- Weather channel receives 18 million requests
- Google delivers 3.6 million searches
- Wikipedia users publish 600 new edits
 - YouTube users watch 4.1 million videos → Over 3 million GB image data



Machine Learning at Facebook

Ranking of posts in news feeds

Content understanding

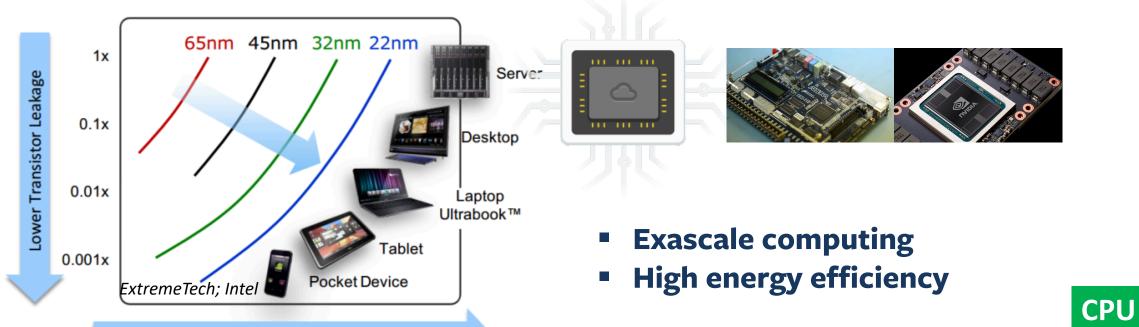
Object detection, segmentation, and tracking

Speech recognition / translation

And Many More!

- Objectionable content detection
- Fraudulent account detection
- Content integrity
- Sentiment analysis

Deep Learning is Fueling the Hardware Renaissance



GPU

Higher Transistor Performance

[MICRO-2011] C.-J. Wu, A. Jaleel, M. Martonosi, S. Steely Jr., and J. Emer, "PACMan: Prefetch-Aware Cache Management for High Performance Caching." [MICRO-2011] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. Steely Jr., and J. Emer, "SHiP: Signature-Based Hit Predictor for High Performance Caching."

[PACT-2014] S.-Y. Lee and C.-J. Wu, "CAWS: Criticality-Aware Warp Scheduling for GPGPU Workloads."

[ISCA-2015] S.-Y. Lee, A. Arunkumar, and C.-J. Wu, "CAWA: Coordinated Warp Scheduling and Cache Prioritization for Critical Warp Acceleration for GPGPU Workloads."

[ISCA-2017] A. Arunkumar et al., "MCM-GPU: Multi-Chip-Module GPUs for Continued Performance Scalability."

[HPCA-2018] A. Arunkumar, S.-Y. Lee, V. Soundararajan, and C.-J. Wu, "LATTE-CC: Latency Tolerance Aware Adaptive Cache Compression Management for Energy Efficient GPUs."

[HPCA-2019] A. Arunkumar, E. Bolotin, D. Nellans, and C.-J. Wu, "Understanding the Future of Energy Efficiency in Multi-Module GPUs."

From Cloud to the Edge

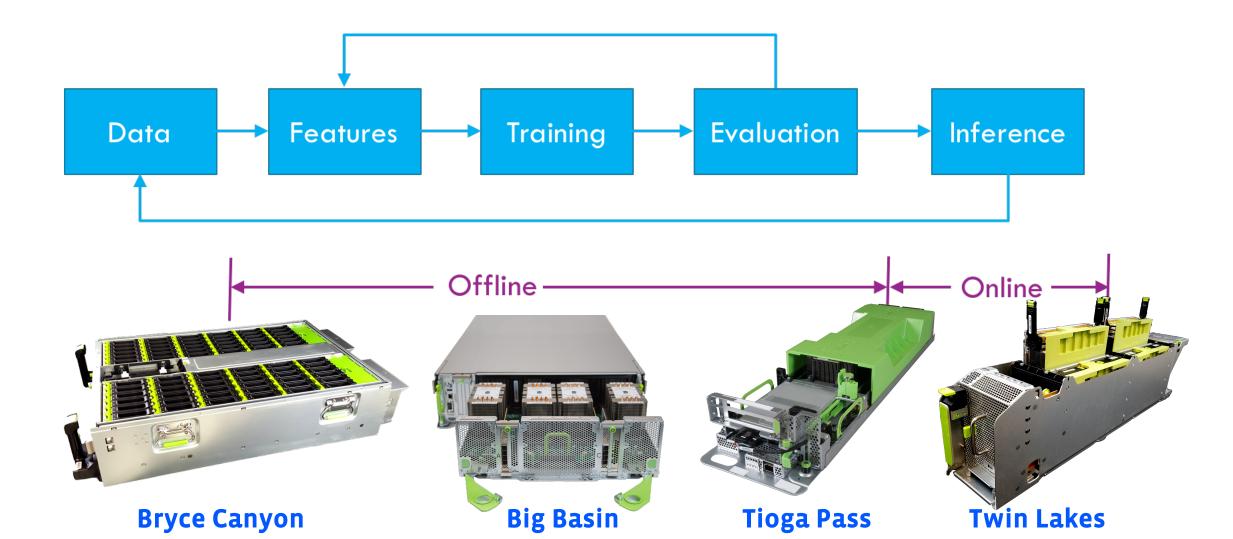
- Minimizing network bandwidth
- Reducing response latency
- Improving user data privacy
- Exploiting features available only at the edge

Keypoints Segmentation



Augmented Reality

Facebook Machine Learning Execution Flow



What We Are Doing at Al Infrastructure Research

Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective

Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril, Dmytro Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, James Law, Kevin Lee, Jason Lu, Pieter Noordhuis, Misha Smelyanskiy, Liang Xiong, Xiaodong Wang

[Hazelwood, HPCA'18]

Facebook. Inc.

Machine Learning at Facebook: Understanding Inference at the Edge

Carole-Jean Wu, David Brooks, Kevin Chen, Douglas Chen, Sy Choudhury, Marat Dukhan, Kim Hazelwood, Eldad Isaac, Yangqing Jia, Bill Jia, Tommer Leyvand, Hao Lu, Yang Lu, Lin Qiao, Brandon Reagen, Joe Spisak, Fei Sun, Andrew Tulloch, Peter Vajda, Xiaodong Wang, Yanghan Wang, Bram Wasti, Yiming Wu, Ran Xian, Sungjoo Yoo, Peizhao Zhang

[Wu, HPCA'19]

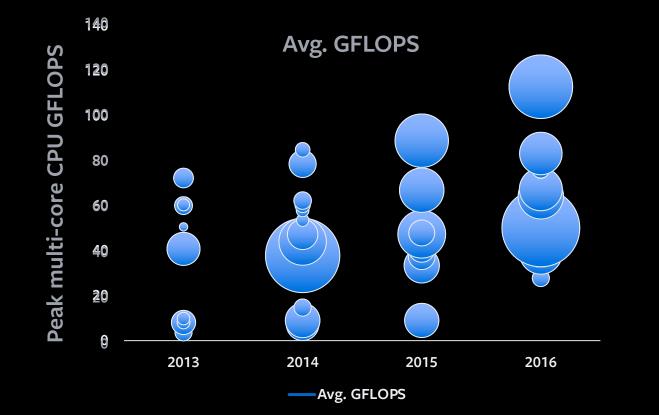
Facebook, Inc.

yo @

Unique Challenges for Edge Inference

Feature-rich edge inference is enabled by the ever increasing mobile performance

Increasing core counts leads to theoretical peak performance increase. But, when looking at the entire ecosystem, the theoretical peak performance is a widespread.



DELIVERING CONSISTENT INFERENCE PERFORMANCE IS CHALLENGING

Unique Challenges for Edge Inference

The Diversity of Mobile Hardware and Software is Not Found in the Controlled Datacenter Environment.

FRAGMENTED SMARTPHONE ECOSYSTEM POSES UNIQUE CHALLENGES FOR EDGE INFERENCE

Introduction:

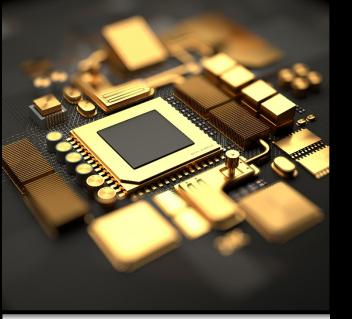
Machine Learning @ FB & Unique Challenges for Edge Inference

Lay of the Land: Closer Look at Smartphones that FB Runs on

Horizontal Integration: Making Inference on Smartphones Vertical Integration: Processing Inference for Oculus VR Inference in the Wild: Performance Variability

Introduction: Machine Learning @ FB & Unique Challenges for Edge Inference Lay of the Land: Closer Look at Smartphones that FB Runs on Horizontal Integration: Making Inference on Smartphones Vertical Integration: Processing Inference for Oculus VR Inference in the Wild: Performance Variability

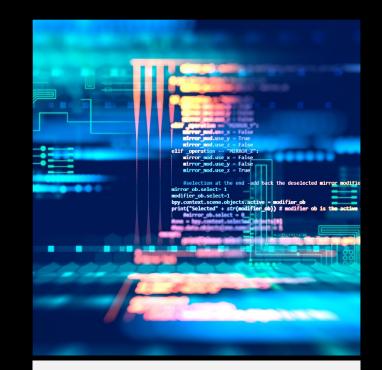
What is Challenging for Mobile Inference?



There is no standard mobile SoC to optimize for. Mobile CPUs Show Little Diversity

Performance

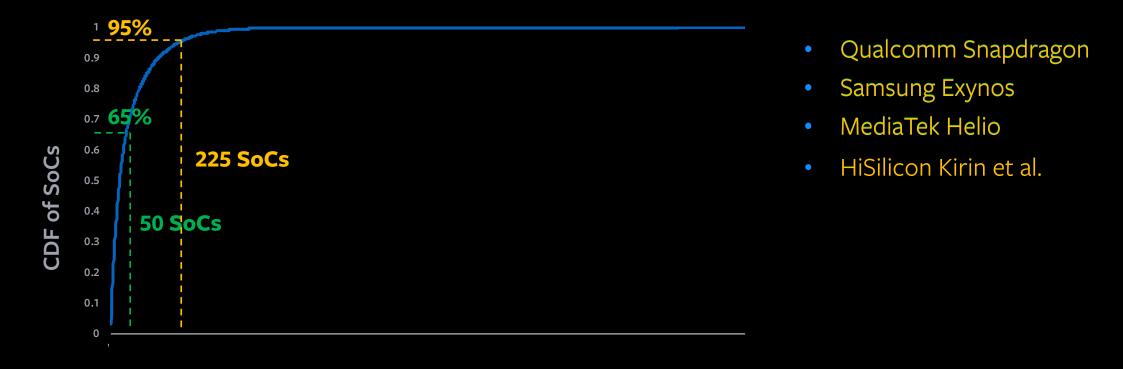
The Performance Difference between a Mobile CPU and GPU is Narrow



Programmability

Programmability is a Primary Roadblock for Using Mobile Coprocessors

Taking a Closer Look at Smartphones Facebook Runs on



Unique SoCs

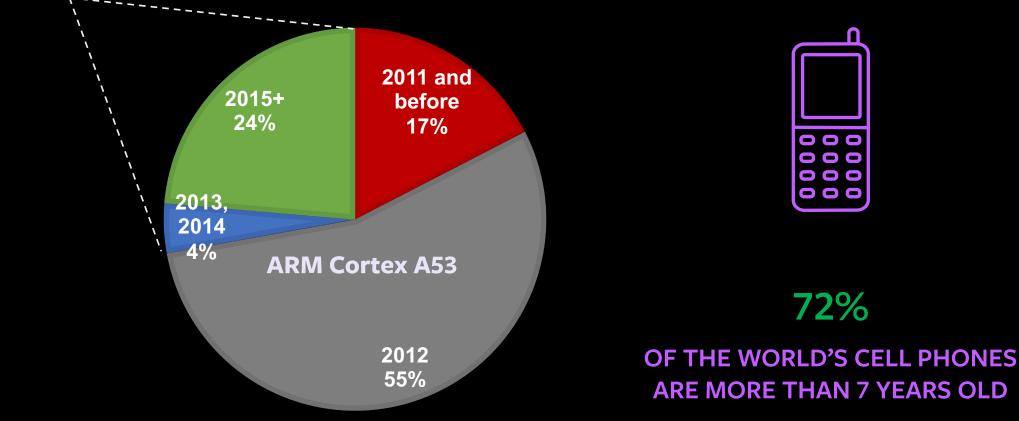
~~

• —

THERE IS NO STANDARD SOC TO OPTIMIZE FOR

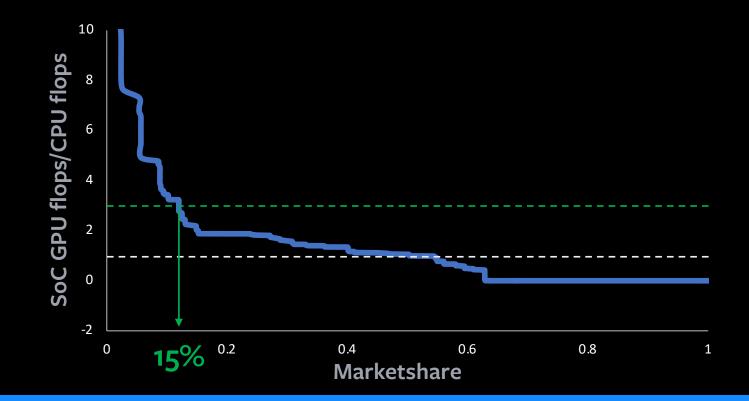
803

In 2018, ~28% of SoCs Use CPUs Designed in 2013 or Later



MOBILE CPUS SHOW LITTLE DIVERSITY

The Performance Difference between a Mobile CPU and GPU is Narrow



ON A MEDIAN SMARTPHONE, THE GPU PROVIDES AS MUCH THEORETICAL PEAK PERFORMANCE AS ITS CPU

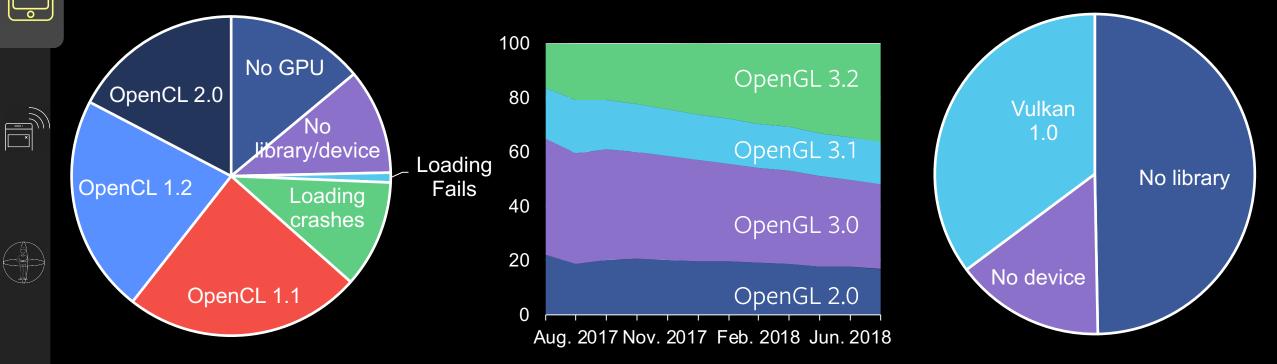
LESS THAN 15% SMARTPHONES HAVE A GPU THAT IS 3 TIMES AS POWERFUL AS ITS CPU

Programmability is a Primary Roadblock for Using Mobile Co-processors

PROGRAMMABILITY --

• OpenCL, OpenGL ES, Vulkan for Android GPUs

Lay of the Land



ارگ گ

80B)

ANDROID GPUS HAVE FRAGILE USABILITY AND POOR PROGRAMMABILITY WHILE IOS HAS BETTER SUPPORT WITH METAL

Quantitative Approach to Mobile Inference Designs

State of the Practice for Mobile Inference is Using CPUs

FRAGMENTATION

• There are more than 2000+ different SoCs but mobile CPUs show little diversity with ARM's Cortex A53 dominating the market

PERFORMANCE

 Performance difference between mobile CPUs and GPUs is narrow

PROGRAMMABILITY

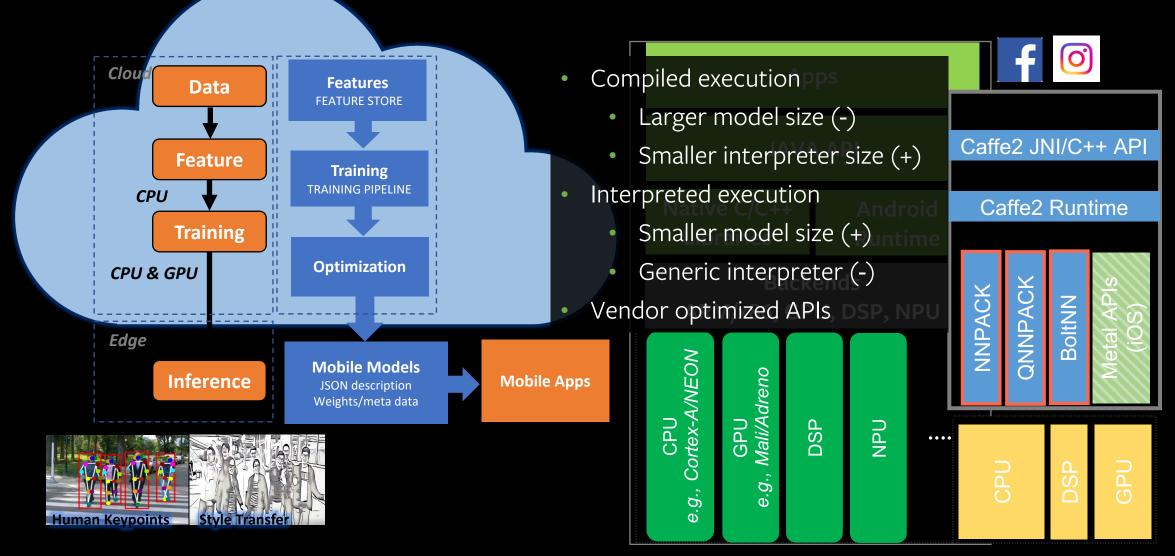
 Programmability is a major road block for **co-processors** (e.g. Android GPUs)

MOBILE INFERENCE OPTIMIZATION IS TARGETED FOR THE COMMON DENOMINATOR OF THE FRAGMENTED SOC ECOSYSTEM

Introduction: Machine Learning @ FB & Unique Challenges for Edge Inference Lay of the Land: Closer Look at Smartphones that FB Runs on Horizontal Integration: Making Inference on Smartphones Vertical Integration: Processing Inference for Oculus VR Inference in the Wild: Performance Variability

Horizontal Integration

Making Inference on Smartphones in the Wild



Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective. Hazelwood et al. HPCA-2018.

Horizontal Integration

Backend Neural Network Libraries in Caffe2 Runtime

NNPACK

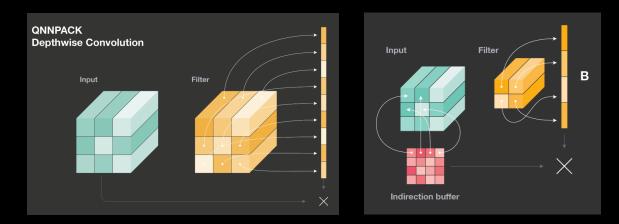
(32-BIT FLOATING POINT)

- Optimized convolution implementation using Winograd and FFT
- Best for NN with 3x3, 5x5 or larger convolutions

QNNPACK/QUANTIZED NNPACK

(8-BIT FIXED POINT)

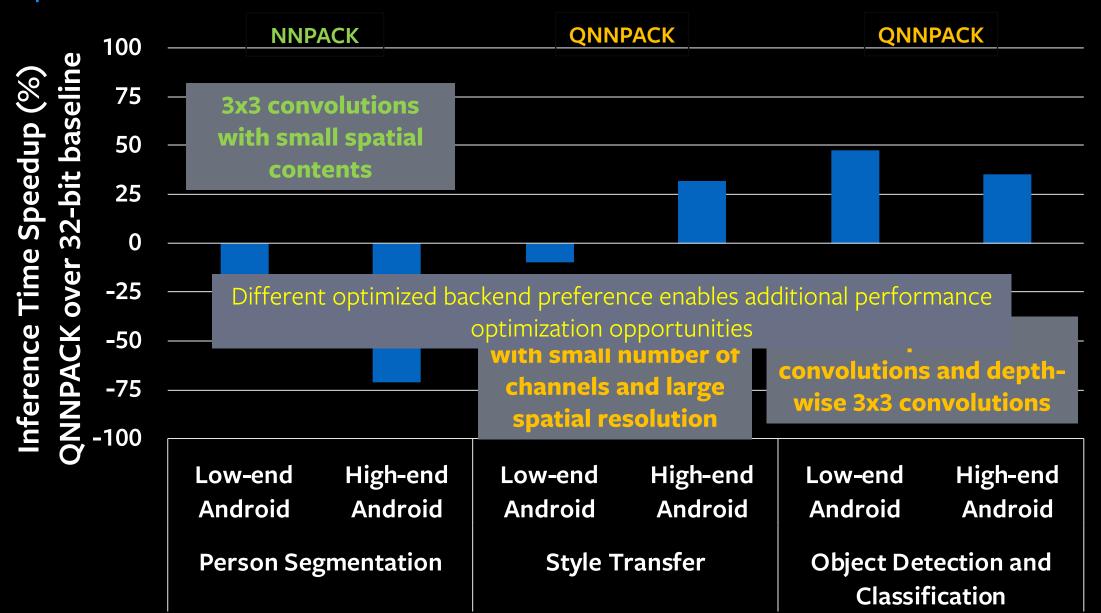
- Optimized direct convolution implementation
- Best for low-intensity convolutions
- Grouped, depth-wise, dilated convolutions
- Eliminate the overhead of im2col and other memory layout transformation



Horizontal Integration

80£

QNNPACK Performance Evaluation

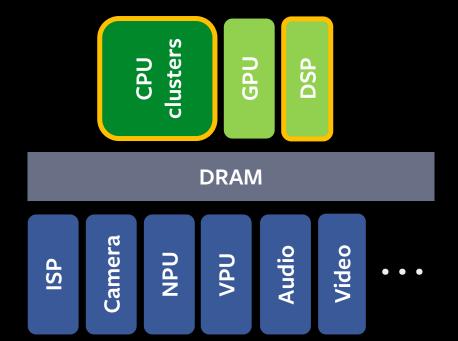


Introduction: Machine Learning @ FB & Unique Challenges for Edge Inference Lay of the Land: Closer Look at Smartphones that FB Runs on Horizontal Integration: Making Inference on Smartphones Vertical Integration: Processing Inference for Oculus VR Inference in the Wild: Performance Variability

رلے

i co

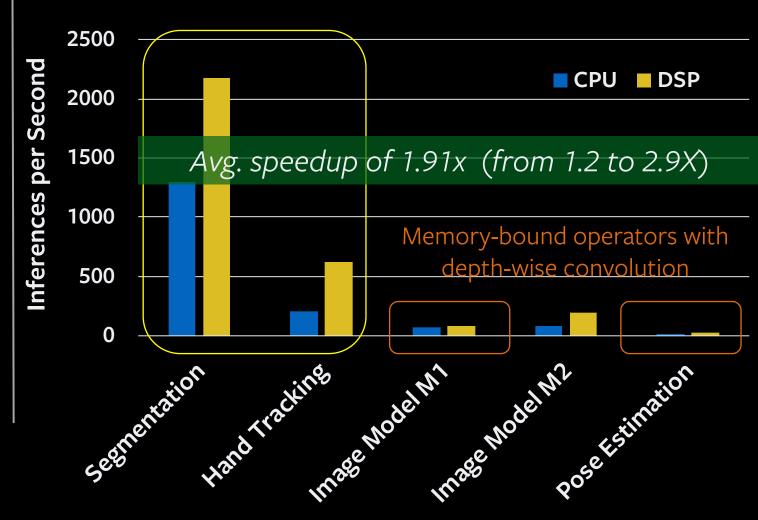
Vertical Integrated Systems Processing Inference for Oculus VR



Vertical Integrated Systems

Performance Acceleration with Co-processors

DNN Features	MACs	Weights
Segmentation	1X	1.5X
Hand Tracking	10X	1X
Image Model 1	10X	2X
Image Model 2	100X	1X
Pose Estimation	100X	4X

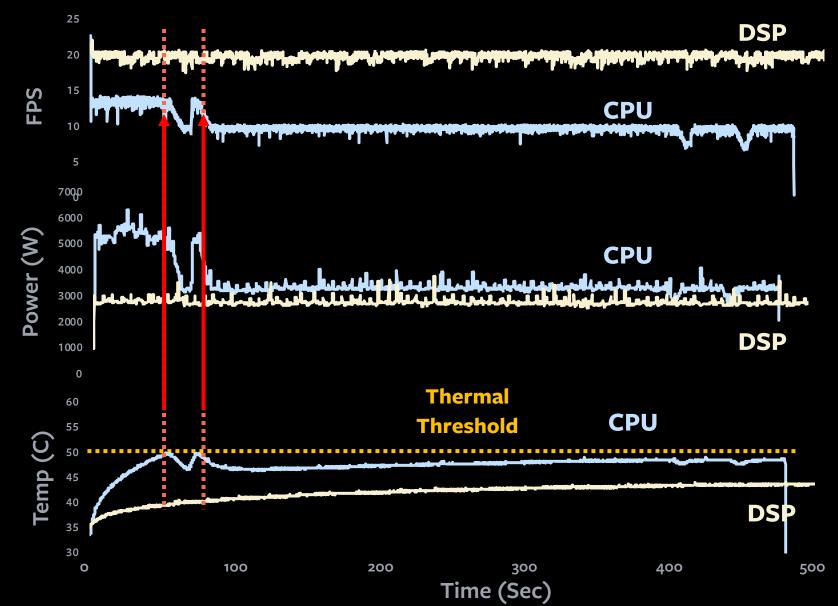


Vertical Integrated Systems

Making Inference on DSPs Leads to Consistent Performance

CPU thermal throttling causes sudden **FPS drop**

The primary reason for using co-processors and accelerators are for **lower power** and **more stable performance**



Computing Platforms at the Edge

OPUS - Good

Baseline - Poor

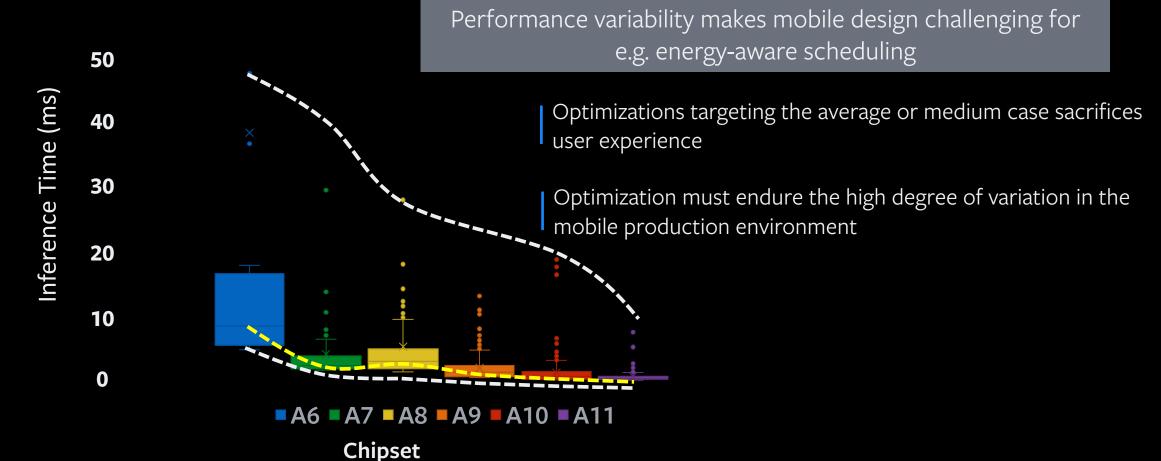
Workload Characterization	Energy Efficiency Optimizati	Temperature Management
MobileBench [IISWC-2013]	STEAM [TECS-2014]	Thermal Modeling
Joule/Instruction [IISWC-2014]	Statistical PPW Optimization	[IISWC-2017] [ITHERM-2018*]
TLP for Mobile [ISPASS-2015]	[HPCA-2016] [TMC-2018]	Hybrid Cooling Technologies
Multitasking for Mobile [IISWC-2015]	DORA [ISPASS-2018]	Near Sensor Processing
Updated power/temperature Workload characteristics		
We use the rigorous	We propose a family of	We design a collection of
workload characterization	algorithms that maximize	temperature-aware optimization:
results to guide designs	smartphone energy	Floor-planning;
tailored for mobile	efficiency subject to various	Advanced cooling technologies
Predicted power/temper	dynamic execution scenarios	for mobile (TEC/PCM);
Mea power/te	su m	Near sensor processing

Introduction: Machine Learning @ FB & Unique challenges for Edge Inference Lay of the Land: Closer look at smartphones that FB runs on Horizontal Integration: Making Inference on Smartphones Vertical Integration: Processing Inference for Oculus VR

Inference in the Wild: Performance Variability

Inference in the Wild

Making "Efficient" Inference in the Wild Requires Developers to Deal with Performance Variability



[3] Improving Smartphone User Experience by Balancing Performance and Energy with Probabilistic Guarantee. Gaudette, Wu, and Vrudhula, HPCA-2016.

IS THE PERFORMANCE VARIABILITY PATTERN PREDICTABLE?

Inference in the Wild

70%

50

40

30

20

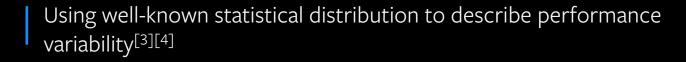
0

tage

Percent

MOO

Does the Performance Variability Follow Certain Statistical Distributions?



While optimizing for the medium case may be more representative than that of the best or worst case, there is a long tail at each direction

[**Methodology**] Use split/AB testing vs. devise systematic benchmarking to re-construct variability effects mimicking production environment is needed

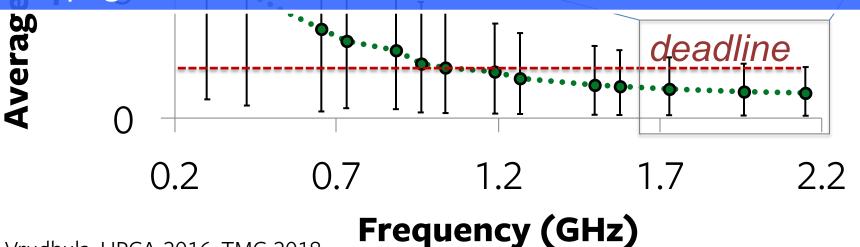
[3] Improving Smartphone User Experience by Balancing Performance and Energy with Probabilistic Guarantee. Gaudette, Wu, and Vrudhula. HPCA-2016.
 [4] Optimizing User Satisfaction of Mobile Workloads Subject to Various Sources of Uncertainties. Gaudette, Wu, and Vrudhula.. TMC-2018.

Inference Time

10

Energy Efficiency Optimization with Stochastic Assumption

We can leverage application characteristics and the observed nondeterministic behavior to predict optimal energy efficiency states: **29% power savings** over Android while maintaining an average web page load time of 2 seconds with a likelihood of 90%



Gaudette, Wu, and Vrudhula. HPCA-2016; TMC-2018.

Inference in the Wild

70%

50

40

30

20

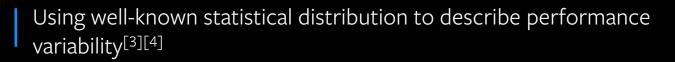
0

tage

Percent

oom

Does the Performance Variability Follow Certain Statistical Distributions?



While optimizing for the medium case may be more representative than that of the best or worst case, there is a long tail at each direction

[**Methodology**] Use split/AB testing vs. devise systematic benchmarking to re-construct variability effects mimicking production environment is needed

[Metrics] Comprehensive metrics are required for fair, representative design comparison, particularly for mobile

[3] Improving Smartphone User Experience by Balancing Performance and Energy with Probabilistic Guarantee. Gaudette, Wu, and Vrudhula. HPCA-2016.
 [4] Optimizing User Satisfaction of Mobile Workloads Subject to Various Sources of Uncertainties. Gaudette, Wu, and Vrudhula.. TMC-2018.

Inference Time

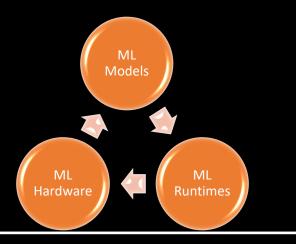
10

How to Compare ML Platforms?

Accelerate progress in ML via fair and useful measurement

MLPerf

www.mlperf.org



Serve both the commercial and research community

Encourage innovation to improve the state-of-the-art of ML

Enforce replicability to ensure reliable results

Use representative workloads, reflecting production use cases

Keep benchmarking affordable

MLPerf Inference Benchmark vo.5

Open Challenges & Issues

- Large and high-quality data sets
- Diversity in machine learning models/use cases

o Metrics

- Performance: how fast is a model for inference ?
- Quality: prediction accuracy ?

Area	Benchmark	Dataset	Model
			MobileNet v1
Image classification	ImageNet	ResNet-50	
Vision	Object detection	MS-COCO 2017	SSD-MobileNet v1
	Object detection		SSD-ResNet-34
Language	Translation	Google NMT	WMT Eng-Germ

How to bridge from node to scale?

It is important to consider full-picture and system effects for efficient, practical edge inference designs

K. Hazelwood et al., "Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective", HPCA 2018.
C.-J. Wu et al., "Machine Learning at Facebook: Understanding Inference at the Edge", HPCA 2019.

