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Scientific American 2017

Every minute, 
• Weather channel receives 18 million requests
• Google delivers 3.6 million searches
• Wikipedia users publish 600 new edits
• YouTube users watch 4.1 million videos

à Over 3 million GB image data
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Ranking of posts in news feeds

Content understanding

Object detection, segmentation, and tracking

Speech recognition / translation

Machine Learning at Facebook

And Many More!
• Objectionable content 

detection
• Fraudulent account      

detection
• Content integrity
• Sentiment analysis



ExtremeTech; Intel

§ Exascale computing
§ High energy efficiency

Deep Learning is Fueling the Hardware Renaissance

[MICRO-2011] C.-J. Wu, A. Jaleel, M. Martonosi, S. Steely Jr., and J. Emer, “PACMan: Prefetch-Aware Cache Management for High Performance Caching.”
[MICRO-2011] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. Steely Jr., and J. Emer, “SHiP: Signature-Based Hit Predictor for High Performance Caching.”

[PACT-2014] S.-Y. Lee and C.-J. Wu, “CAWS: Criticality-Aware Warp Scheduling for GPGPU Workloads.”
[ISCA-2015] S.-Y. Lee, A. Arunkumar, and C.-J. Wu, “CAWA: Coordinated Warp Scheduling and Cache Prioritization for Critical Warp Acceleration for GPGPU 
Workloads.”
[ISCA-2017] A. Arunkumar et al., “MCM-GPU: Multi-Chip-Module GPUs for Continued Performance Scalability.”
[HPCA-2018] A. Arunkumar, S.-Y. Lee, V. Soundararajan, and C.-J. Wu, “LATTE-CC: Latency Tolerance Aware Adaptive Cache Compression Management for 
Energy Efficient GPUs.”
[HPCA-2019] A. Arunkumar, E. Bolotin, D. Nellans, and C.-J. Wu, “Understanding the Future of Energy Efficiency in Multi-Module GPUs.”

CPU

GPU



• Minimizing network bandwidth
• Reducing response latency
• Improving user data privacy
• Exploiting features available only at the edge 

Augmented Reality 

with Smart Camera

Keypoints

Segmentation

From Cloud to the Edge

K. Hazelwood et al., “Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective”, HPCA 2018. 

C.-J. Wu et al., “Machine Learning at Facebook: Understanding Inference at the Edge”, HPCA 2019.



Facebook Machine Learning Execution Flow
_
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What We Are Doing at AI Infrastructure Research

[Hazelwood, HPCA’18]

[Wu, HPCA’19]



Feature-rich edge inference is enabled by the ever increasing mobile performance

Increasing core counts leads to theoretical peak performance increase. But, when looking at 
the entire ecosystem, the theoretical peak performance is a widespread. 

Unique Challenges for Edge Inference
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The Diversity of Mobile Hardware and Software is Not Found in the Controlled 
Datacenter Environment.

Unique Challenges for Edge Inference

FRAGMENTED SMARTPHONE ECOSYSTEM POSES UNIQUE CHALLENGES FOR EDGE INFERENCE

2
MAJOR MOBILE OS

3
MAJOR GRAPHICS APIs

20+
MAJOR CHIPSET VENDORS

20+
MAJOR CPU UARCH

10+
MAJOR GPU UARCH

2000+
SoCs

How do we optimize 
system designs for 

real-time ML 
inference?



Introduction:
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& Unique Challenges for 

Edge Inference

Lay of the Land: 
Closer Look at 

Smartphones that FB 
Runs on

Horizontal Integration: 
Making Inference on 

Smartphones

Vertical Integration: 
Processing Inference for 

Oculus VR

Inference in the Wild: 
Performance 

Variability

10



Introduction: 
Machine Learning @ FB 
& Unique Challenges for 

Edge Inference

Lay of the Land: 
Closer Look at 

Smartphones that FB 
Runs on

Horizontal Integration: 
Making Inference on 

Smartphones

Vertical Integration: 
Processing Inference for 

Oculus VR

Inference in the Wild: 
Performance 

Variability

11



Performance
The Performance Difference 

between a Mobile CPU and GPU is 
Narrow

Programmability 
Programmability is a Primary 

Roadblock for Using Mobile Co-
processors

Fragmentation
There is no standard mobile SoC 

to optimize for. 
Mobile CPUs Show Little Diversity

What is Challenging for Mobile Inference?
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Taking a Closer Look at Smartphones Facebook Runs on

Lay of the Land
F R A G M E N T A T I O N
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Unique SoCs

IS THERE A DOMINATING MOBILE SOC TO OPTIMIZE FOR?THERE IS NO STANDARD SOC TO OPTIMIZE FOR

65%

50 SoCs

• Qualcomm Snapdragon
• Samsung Exynos
• MediaTek Helio
• HiSilicon Kirin et al. 

95%

225 SoCs

• Qualcomm Snapdragon
• Samsung Exynos
• MediaTek Helio



Lay of the Land

In 2018, ~28% of SoCs Use CPUs Designed in 2013 or Later 

2011 and 
before
17%

2012
55%

2013, 
2014
4%

2015+
24%

ARM Cortex A53

MOBILE CPUS SHOW LITTLE DIVERSITY

72%
OF THE WORLD’S CELL PHONES 
ARE MORE THAN 7 YEARS OLD

F R A G M E N T A T I O N



The Performance Difference between a Mobile CPU and GPU is Narrow

Lay of the Land
P E R F O R M A N C E

LESS THAN 15% SMARTPHONES HAVE A GPU THAT IS 3 TIMES AS POWERFUL AS ITS CPU
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ON A MEDIAN SMARTPHONE, THE GPU PROVIDES AS MUCH THEORETICAL PEAK PERFORMANCE AS ITS CPU



Programmability is a Primary Roadblock for Using Mobile Co-processors
• OpenCL, OpenGL ES, Vulkan for Android GPUs

Lay of the Land
P R O G R A M M A B I L I T Y

ANDROID GPUS HAVE FRAGILE USABILITY AND POOR PROGRAMMABILITY WHILE IOS HAS BETTER SUPPORT 
WITH METAL

No GPU

No 
library/device

Loading
FailsLoading 

crashes
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MOBILE INFERENCE OPTIMIZATION IS TARGETED FOR THE COMMON DENOMINATOR OF THE FRAGMENTED 
SOC ECOSYSTEM

State of the Practice for Mobile Inference is Using CPUs

Quantitative Approach to Mobile Inference Designs

• There are more than 2000+ 
different SoCs but mobile 
CPUs show little diversity 
with ARM’s Cortex A53 
dominating the market

• Programmability is a major road 
block for co-processors (e.g. 
Android GPUs)

• Performance difference between 
mobile CPUs and GPUs is 
narrow

PROGRAMMABILITYFRAGMENTATION PERFORMANCE
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Making Inference on Smartphones in the Wild

Horizontal Integration

Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective. Hazelwood et al. HPCA-2018.
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• Compiled execution
• Larger model size (-)
• Smaller interpreter size (+)

• Interpreted execution
• Smaller model size (+)
• Generic interpreter (-)

• Vendor optimized APIs



Backend Neural Network Libraries in Caffe2 Runtime

Horizontal Integration

• Optimized convolution implementation using 
Winograd and FFT 

• Best for NN with 3x3, 5x5 or larger convolutions 

• Optimized direct convolution implementation

• Best for low-intensity convolutions

• Grouped, depth-wise, dilated convolutions

NNPACK 

(32-BIT FLOATING POINT)

QNNPACK/QUANTIZED NNPACK 

(8-BIT FIXED POINT)

• Eliminate the overhead of im2col and other 
memory layout transformation



QNNPACK Performance Evaluation

Horizontal Integration
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Processing Inference for Oculus VR

Vertical Integrated Systems
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Performance Acceleration with Co-processors
Vertical Integrated Systems

DNN Features MACs Weights
Segmentation 1X 1.5X
Hand Tracking 10X 1X
Image Model 1 10X 2X
Image Model 2 100X 1X

Pose Estimation 100X 4X
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depth-wise convolution

Avg. speedup of 1.91x  (from 1.2 to 2.9X)



Making Inference on DSPs Leads to Consistent Performance
Vertical Integrated Systems

CPU thermal throttling 
causes sudden FPS drop

The primary reason for using 
co-processors and accelerators 
are for lower power and 
more stable performance
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MobileBench [IISWC-2013]

Joule/Instruction [IISWC-2014]

TLP for Mobile [ISPASS-2015]

Multitasking for Mobile [IISWC-2015]

Workload Characterization

Computing Platforms at the Edge

STEAM [TECS-2014]

Statistical PPW Optimization 
[HPCA-2016] [TMC-2018]

DORA [ISPASS-2018]

Energy Efficiency Optimization
Thermal Modeling 

[IISWC-2017] [ITHERM-2018*]

Hybrid Cooling Technologies

Temperature Management

Near Sensor Processing

We use the rigorous 
workload characterization 

results to guide designs 
tailored for mobile

We propose a family of 
algorithms that maximize 

smartphone energy 
efficiency subject to various 
dynamic execution scenarios

We design a collection of 
temperature-aware optimization:

Floor-planning;
Advanced cooling technologies 

for mobile (TEC/PCM);
Near sensor processing
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A6 A7 A8 A9 A10 A11

Making “Efficient” Inference in the Wild Requires Developers to Deal with Performance 
Variability

Inference in the Wild
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[3] Improving Smartphone User Experience by Balancing Performance and Energy with Probabilistic Guarantee. Gaudette, Wu, and Vrudhula, HPCA-2016.

Optimizations targeting the average or medium case sacrifices 
user experience 

Optimization must endure the high degree of variation in the 
mobile production environment

IS THE PERFORMANCE VARIABILITY PATTERN PREDICTABLE?

Mobile scheduler optimizations for the best case leads to 
sub-optimal energy efficiency[3]

Developers have better controlled over the system stack and 
the production environment in data centers

Performance variability makes mobile design challenging for 
e.g. energy-aware scheduling



Does the Performance Variability Follow Certain Statistical Distributions? 

Inference in the Wild
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[3] Improving Smartphone User Experience by Balancing Performance and Energy with Probabilistic Guarantee. Gaudette, Wu, and Vrudhula. HPCA-2016.
[4] Optimizing User Satisfaction of Mobile Workloads Subject to Various Sources of Uncertainties. Gaudette, Wu, and Vrudhula.. TMC-2018.

70%
Using well-known statistical distribution to describe performance 
variability[3][4]

While optimizing for the medium case may be more representative than that 
of the best or worst case, there is a long tail at each direction

[Methodology] Use split/AB testing vs. devise systematic benchmarking to 
re-construct variability effects mimicking production environment is needed
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Inference Time
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Energy Efficiency Optimization with Stochastic Assumption

30

We can leverage application characteristics and the observed non-
deterministic behavior to predict optimal energy efficiency states:

29% power savings over Android while maintaining an average web 
page load time of 2 seconds with a likelihood of 90%

Gaudette, Wu, and Vrudhula. HPCA-2016; TMC-2018.



Does the Performance Variability Follow Certain Statistical Distributions? 

Inference in the Wild
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[3] Improving Smartphone User Experience by Balancing Performance and Energy with Probabilistic Guarantee. Gaudette, Wu, and Vrudhula. HPCA-2016.
[4] Optimizing User Satisfaction of Mobile Workloads Subject to Various Sources of Uncertainties. Gaudette, Wu, and Vrudhula.. TMC-2018.

70%
Using well-known statistical distribution to describe performance 
variability[3][4]

While optimizing for the medium case may be more representative than that 
of the best or worst case, there is a long tail at each direction

[Methodology] Use split/AB testing vs. devise systematic benchmarking to 
re-construct variability effects mimicking production environment is needed

[Metrics] Comprehensive metrics are required for fair, representative 
design comparison, particularly for mobile

20100 30 40 50 60 908070 100210 3 4 5 6 987 10
Inference Time



How to Compare ML Platforms? 



Accelerate progress in ML via fair and useful measurement

Serve both the commercial and research community

Encourage innovation to improve the state-of-the-art of ML

Enforce replicability to ensure reliable results

Use representative workloads, reflecting production use cases

Keep benchmarking affordable

www.mlperf.org

ML 
Models

ML 
Runtimes

ML 
Hardware



o Metrics
o Performance: how fast is a model 

for inference ? 
o Quality: prediction accuracy ?

Area Benchmark Dataset Model

Vision

Image classification ImageNet
MobileNet v1

ResNet-50

Object detection
MS-COCO 

2017

SSD-MobileNet v1

SSD-ResNet-34

Language Translation Google NMT WMT Eng-Germ

MLPerf Inference Benchmark v0.5 

Open Challenges & Issues
• Large and high-quality data sets
• Diversity in machine learning models/use cases



How to bridge from node to scale?

35

K. Hazelwood et al., “Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective”, HPCA 2018. 

C.-J. Wu et al., “Machine Learning at Facebook: Understanding Inference at the Edge”, HPCA 2019.

It is important to consider full-picture and system effects for efficient, 
practical edge inference designs



QUESTIONS?
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Thank you
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