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Abstract

Training deep convolutional neural networks such as VGG
and ResNet by gradient descent is an expensive exercise re-
quiring specialized hardware such as GPUs. Recent works
have examined the possibility of approximating the gradient
computation while maintaining the same convergence proper-
ties. While promising, the approximations only work on rela-
tively small datasets such as MNIST. They also fail to achieve
real wall-clock speedups due to lack of efficient GPU imple-
mentations of the proposed approximation methods. In this
work, we explore three alternative methods to approximate
gradients, with an efficient GPU kernel implementation for
one of them. We achieve wall-clock speedup with ResNet-20
and VGG-19 on the CIFAR-10 dataset upwards of 7 percent,
with a minimal loss in validation accuracy.
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1 Introduction

Deep convolutional neural networks (CNN) are now arguably
the most popular computer vision algorithms. Models such
as VGG [15] and ResNet [7] are widely used. However, these
models contain up to hundreds of millions of parameters,
resulting in high memory footprint, long inference time and
even longer training time.

The memory footprint and inference time of deep CNNs
directly translate to application size and latency in produc-
tion. Popular techniques based on model sparsification are
able to deliver orders of magnitude reduction in the number
of parameters in the network [6]. However, the training of
these deep CNNss is still a lengthy and expensive process. Re-
cent research has attempted to address the training time issue
by demonstrating effective training on large scale comput-
ing clusters consisting of thousands of GPUs [21]. However,
these computing clusters are still extremely expensive and
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labor-intensive to set up or maintain. An alternative to using
large computing clusters is to accelerate the computations
of the gradients themselves. There has been recent effort to
approximate the gradient computation [1, 16, 17, 19]. Other
recent works have also suggested that the exact gradient might
not be necessary for efficient training of deep neural networks.
Studies have shown that only the sign of the gradient is nec-
essary for efficient back propagation [20]. Surprisingly, even
random gradients can be used to efficiently train neural net-
works. [10, 12] However, these methods have not been shown
to result in real wall-clock speedups in training for deep
CNNss either due to a lack of efficient GPU implementation or
because the methods only apply to fully connected networks.

In this work, we hypothesize that we can extend gradient
approximation methods to deep CNNss to speed up gradient
computations in the training process. We hypothesize that we
can apply these approximations to only a subset of the layers
and maintain the validation accuracy of the trained network.
We validate our hypotheses on three deep CNNs (2-layer
CNN [9], ResNet-20 [7], VGG-19 [15]) on CIFAR-10.

We summarize our contributions as follows:

e We present three gradient approximation methods for
training deep CNNs, along with an efficient GPU im-
plementations for one of them.

e We explore the application of these methods to deep
CNNs and show that they allow for training conver-
gence with minimal validation accuracy loss.

2 Approximation Methods

In a forward-backward pass of a deep CNN during training, a
convolutional layer requires three convolution operations: one
for forward propagation and two for backward propagation,
as demonstrated in Figure 1. We approximate the convolution
operation which calculates the gradients of the filter values,
which constitutes roughly a third of the computational time.
We aim to apply the approximation a quarter of the time
across layers/batches. This leads to a theoretical maximum
speedup of around 8 percent.

2.1 Zero Gradient

The first method passes back zero as the weight gradient of
a chosen layer for a chosen batch. If done for every training
batch, it effectively freezes the filter weights.
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Figure 1. Forward and backward propagation through a con-
volutional layer during training. Asterisks indicate convolu-
tion operations and the operation in the red box is the one we
approximate.

2.2 Random Gradient

The second method passes back random numbers sampled
from a normal distribution with mean 0 and standard devi-
ation ﬁ (inverse of batch size) as the weight gradient of a
chosen layer for a chosen batch. Different values in the weight
gradient are chosen independently. Importantly, this is differ-
ent from the random feedback alignment method discussed
in [10] and [12] as we regenerate the random numbers every
training batch. We implement this using tf.py_func, where
np.random.normal is used to generate the random values. This
approach is extremely inefficient, though surprisingly faster
than a naive cuRAND implementation in a custom tensorflow
operation for most input cases. We are working on a more

efficient implementation.

2.3 Approximated Gradient

The third method we employ is based on the top-k selection
algorithms popular in literature [19]. In the gradient compu-
tation for a filter in a convolutional layer, only the largest-
magnitude gradient value is retained for each output channel
and each batch element. They are scaled according to the sum
of the gradients in their respective output channels so that
the gradient estimate is unbiased, similar to the approach em-
ployed in [18]. All other gradients are set to zero. This results
in a sparsity ratio of 1 — ﬁ, where H and W are the height
and width of the output hidden layer. The filter gradient is
then calculated from this sparse version of the output gradi-
ent tensor with the saved input activations from the forward
pass. The algorithm can be trivially modified to admit the
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Figure 2. The approximation algorithm illustrated for an
example with two filters and three input elements. For each
filter, we extract a patch from each batch element’s input
activations and accumulate the patches.

top-k magnitude gradient values with an adjustment of the
scaling parameter, a direction of future research. Similar to
the random gradient method, we find that we need to scale our
approximated gradient by a factor proportional to the batch
size for effective training. In the experiments here, we scale
them by 3=.

2.4 Efficient GPU Implementation

A major contribution of this work is an implementation of
the approximated gradient method in CUDA. This is critical
to achieve actual wall-clock training speedups. A naive Ten-
sorflow implementation using tf.image.extract_glimpse does
not use the GPU and results in significantly slower training
time. Efficient GPU implementations for dense convolutions
frequently use matrix lowering or transforms such as FFT
or Winograd. Sparse convolutions, on the other hand, is fre-
quently implemented directly on CPU or GPU [3, 13]. Here
we interpret the sparse convolution in the calculation of the fil-
ter gradient as a patch extraction procedure, as demonstrated
in Figure 2. The nonzeros in the output specifies patches in
the input that need to be extracted and averaged.

Our kernel implementation expects input activations in
NHWC,; format and output gradients in NC,HW format. It
produces the output gradient in C,KKC; format. In NHWC
format, GPU global memory accesses from the patch extrac-
tions can be efficiently coalesced across the channel dimen-
sion, which is typically a multiple of 8. Each thread block is
assigned to process several batch elements for a fixed output
channel. Each thread block first computes the indices and
values of the nonzero weight values from the output gradients.
Then, they extract the corresponding patches from the input
activations and accumulate them to the result.

‘We benchmark the performance of our code against NVIDIA
cuDNN v7.4.2 library apis. Approaches such as cuSPARSE
have been demonstrated to be less effective in a sparse convo-
lution setting and are not pursued here [3]. All timing metrics
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are obtained on a workstation with a Titan-Xp GPU and 8
Intel Xeon CPUs at 3.60GHz.

All training experiments are conducted in NCHW format,
the preferred data layout of cuDNN. As a result, we incur a
data transpose overhead of the input activations from NCHW
to NHWC. In addition, we also incur a slight data transpose
overhead of the filter gradient from C,KKC; to KKC;C,.

3 Evaluation

We test our approach on three common neural network archi-
tectures (2-layer CNN [9], VGG-19 [15] and ResNet-20[7])
on the CIFAR-10 dataset. The local response normalization
in the 2-layer CNN is replaced by the more modern batch
normalization method [8]. For all three networks, we aim
to use the approximation methods 25 percent of the time.
In this work, we test all three approximation methods sepa-
rately and do not combine. On the 2-layer CNN, we apply the
selected approximation method to the second convolutional
layer every other training batch. On VGG-19 and ResNet-20,
we apply the selected approximation method to every fourth
convolutional layer every training batch, starting from the
second convolutional layer. We start from the second layer
because recent work has shown that approximating the first
convolutional layer is difficult [1]. This results in four approx-
imated layers for VGG-19 and five approximated layers for
ResNet-20. We refer to a specification of where and when
to apply the approximation an approximation schedule. For
the ResNet-20 model, we train a baseline ResNet-14 model
as well. Training a smaller model is typically done in practice
when training time is of concern. Ideally, our approximation
methods to train the larger ResNet-20 model should result in
higher validation accuracy than the ResNet-14 model.

3.1 Performance Comparisons

We compare the performance of our GPU kernel for the ap-
proximated gradient method with the full gradient computa-
tion for the weight filter as implemented in cuDNN v7.4.2.
cuDNN offers state-of-the-art performance in dense gradient
computation and is used in almost every deep learning library.
Here we demonstrate that our gradient approximation method
does yield an efficient GPU implementation that can lead to
actual speedups compared to cuDNN.

We present timing comparisons for a few select input cases
encountered in the network architectures used in this work in
Table 1. We aggregate the two data transpose overheads of
the input activations and the filter gradients. We make three
observations.

Firstly, in most cases, the gradient approximation, includ-
ing data transposition, is at least three times as fast as the
cuDNN baseline. Secondly, we observe that cuDNN timing
scales with the number of input channels times the height and
width of the hidden layer, whereas our approximation kernel
timing scales with the number of input channels alone. This

EMC2, 4th Edition, June 23, 2019, Pheonix, AZ

Input Output  [Height / ICUDA  [Transpose [Approx. [Speed-up
Channels |Channels [Width  |cuDNN [Kernel  [Overhead [Total [Factor
256 256 8| 0.89 0.46] 0.05] 0.51 1.7
128 128 16 0.89 0.20) 0.08] 0.28] 3.2
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32] 32 16) 0.20 0.03] 0.02] 0.05 4.0
64 64 8| 0.22) 0.04] 0.02] 0.06] 3.7

Table 1. Performance comparisons. All timing statistics in
microseconds. Approx. total column is the sum of the CUDA
Kernel time and the transpose overhead.

Speed-up Accuracy Loss
Full Gradient 1x 0
Zero Gradient -5.7% 0.2%
Random Gradient -38% -0.8%
Approx. Gradient -6.6% 1.0%

Table 2. Training speedup and validation accuracy loss for the
approximation methods on 2-layer CNN. Negative speedup
indicates a slowdown.

is expected from the nature of the computations involved: the
performance bottleneck of our kernel is the memory intensive
patch extractions, the sizes of which scale with the number
of input channels times filter size. Thirdly, we observe that
in many cases, the data transposition overhead is over fifty
percent of the kernel time, suggesting that our implementation
can be further improved by fusing the data transpose into the
kernel as in SBNet [14]. This is left for future work.

3.2 Speedup-Accuracy Tradeoffs

Here, we present the training wall-clock speedups achieved
for each network and approximation method. We compare
the speedups against the validation accuracy loss, measured
from the best validation accuracy achieved during training.
Validation accuracy was calculated every ten epochs. As afore-
mentioned, the random gradient implementation is quite in-
efficient and is pending future work. The speedup takes into
account the overhead of defining a custom operation in Ten-
sorflow, as well as the significant overhead of switching gra-
dient computation on global training step. For the 2-layer
CNN, we are unable to achieve wall-clock speedup for all ap-
proximation methods, even the zero gradient one, because of
this overhead. (Table 2) However, all approximation methods
achieve little validation accuracy loss. The random gradient
method even outperforms full gradient computation by 0.8%.

For ResNet-20, the approximation schedule we choose
does not involve switching gradient computations. We avoid
the switching overhead and can achieve speedups for both the
zero gradient method and the approximated gradient method.
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Speed-up Accuracy Loss
Full Gradient 1x 0
Zero Gradient 7.1% 1.5%
Random Gradient -1.4% 1.8%
Approx. Gradient 3.5% 0.75%
ResNet-14 22% 1.0%

Table 3. Training speedup and validation accuracy loss for
the approximation methods on ResNet-20. Negative speedup
indicates a slowdown.

Speed-up Accuracy Loss
Full Gradient 1x 0
Zero Gradient 7.3% 1.0%
Random Gradient Over -100% 0.1%
Approx. Gradient 1.5% 0.7%

Table 4. Training speedup and validation accuracy loss for
the approximation methods on VGG-19. Negative speedup
indicates a slowdown.

As shown in Table 3, the zero gradient method achieves
roughly a third of the speedup compared to training the base-
line ResNet-14 model. The approximated gradient method
also achieves a 3.5% wall-clock speedup, and is the only
method to suffer less accuracy loss than just using a smaller
ResNet-14. In the following section, we demonstrate that
with other approximation schedules, the approximated gradi-
ent method can achieve as little as 0.1% accuracy loss.

For VGG-19, despite being quicker to converge, the approx-
imation methods all have worse validation accuracy than the
baseline method. (Table 4) The best approximation method
appears to be the random gradient method, though it is ex-
tremely slow due to our inefficient implementation in Ten-
sorflow. The other two methods also achieve high validation
accuracies, with the approximated gradient method slightly
better than the zero gradient method. Both methods are able
to achieve speedups in training.

3.3 Robustness to Approximation Schedule

Here, we explore two new approximation schedules for ResNet-
20, keeping the total proportion of the time we apply the ap-
proximation to 25 percent. We will refer to the approximation
schedule presented in the section above as schedule 1. Sched-
ule 2 applies the selected approximation method every other
layer for every other batch. Schedule 3 applies the selected
approximation method every layer for every fourth batch. We
also present the baseline result of the ResNet-14 model.

As we can see from Table 5, under schedules 2 and 3,
both the zero gradient and the approximated gradient method
perform well. In fact, for the approximated gradient and the
zero gradient methods the validation accuracy loss is smaller
than schedule 1. Indeed, in schedule 3, the approximated

Schedule 1  Schedule 2  Schedule 3
Full Gradient 91.8%
Zero Gradient 90.3% 91.6% 91.1%
Random Gradient 90.0% 88.8% 87.9%
Approximated Gradient 91.1% 91.6% 91.7%
Baseline, ResNet-14 90.8%

Table 5. Validation accuracy for different approximation
schedules on ResNet-20. Schedule 1 is the same as presented
above.

gradient’s best validation accuracy is within 0.1% of that of
the full gradient computation. The random gradient method’s
validation accuracy is in now line with its poor loss curve for
these two approximation schedules. This suggests that the
random gradient method does not work well for ResNet-20
architecture.

4 Discussion and Conclusion

While research on accelerating deep learning inference abounds,
there is relatively limited work focused on accelerating the
training process. Recent works such as PruneTrain prune the
neural network in training, but suffers quite serious loss in
validation accuracy [11]. Approaches such as DropBack [4]
and MeProp [16, 19] show that approximated gradient are
sufficient in successfully training neural networks but don’t
yet offer real wall-clock speedups. In this work, we study
three alternative gradient approximation methods.

We are surprised by the consistent strong performance of
the zero gradient method. For ResNet-20, for two of the three
approximation schedules tested, the validation accuracy loss
is better than that of a smaller baseline network. Its perfor-
mance is also satisfactory on VGG-19 as well as the 2-layer
CNN. It admits an extremely fast implementation that delivers
consistent speedups. This points to a simple way to potentially
boost training speed in deep neural networks, while maintain-
ing their performance advantage over shallower alternatives.

We also demonstrate that random gradient methods can
train deep neural networks to good validation accuracy. For
the 2-layer CNN and VGG-19, this method leads to the least
validation accuracy loss of all three approximation methods.
However, its validation accuracy serious lags other methods
on ResNet-20. Naive feedback alignment, where the random
gradient signal is fixed before training starts, has been shown
to be difficult to extend to deep convolutional architectures
[2, 5] . We show here that if the random gradients are newly
generated every batch and applied to a subset of layers, they
can be used to train deep neural networks to convergence.
Interestingly, generating new random gradients every batch
effectively abolishes any kind of possible “alignment” in the
network, calling for a new explanation of why the network
converges. Evidently, this method holds the potential for an
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extremely efficient implementation, something we are cur-
rently working on.

Finally, we present a gradient approximation method with
an efficient GPU implementation. Our approximation method
is consistent in terms of validation accuracy across different
network architectures and approximation schedules. Although
the training wall clock time speedup isn’t large, the validation
accuracy loss is also small. We wish to re-emphasize here
the small validation accuracy difference observed between
the baseline ResNet-14 and ResNet-20, leading us to believe
that novel training speed-up methods must incur minimal
validation accuracy loss to be more practical than simply
training a smaller network.

In conclusion, we show that we can “fool" deep neural
networks into training properly while supplying it only very
minimal gradient information on select layers. The approxi-
mation methods are simple and robust, holding the promise
to accelerate the lengthy training process for state-of-the-art
deep CNNE.

5 Future Work

Besides those already mentioned, there are several more inter-
esting directions of future work. One direction is predicting
the validation accuracy loss that a neural network would suffer
from a particular approximation schedule. With such a predic-
tor, we can optimize for the fastest approximation schedule
while constraining the final validation accuracy loss before
the training run. This would remove the need for arbitrarily
selecting an approximation ratio like we did here. We can
also examine the effects of mingling different approximation
methods and integrating existing methods such as PruneTrain
and Dropback [4, 11]. Another direction is approximating
the gradient of the hidden activations, as is done in meProp
[16]. Finally, we are working on integrating this approach
into a distributed training setting, where the approximation
schedule is now 3-dimensional (machine, layer, batch). This
approach would be crucial for the approximation methods
to work with larger scale datasets such as ImageNet, thus
potentially allowing for wall-clock speed-up in large scale
training.
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