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Abstract
As Machine Learning (ML) applications become pervasive
and computer architects further integrate hardware support,
the need to rapidly explore trade-offs between algorithms
and hardware becomes pressing. While prior work on hard-
ware accelerators has led to tremendous performance and
energy improvements, it can be difficult to generalize these
approaches without resorting to special purpose tools or
even languages. Through object-oriented design principles
we describe a general and reusable approach for generating
parameterized neural network hardware. Specifically, we
describe our experiences with high-level hardware design
objects for building neural network hardware based on the
open-source Python HDL, PyRTL. By thinking at a higher
level of abstraction than simple “hardware modules,”, we
open the door to a process by which hardware can be devel-
oped with software engineering principles. This creates new
opportunities for a tight feedback loop between machine
learning algorithm innovation and hardware design reality.
Future works considering hardware development for ML
applications can benefit from our work analyzing the costs
and benefits of abstraction.
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1 Introduction
Increasingly the field of computer architecture is turning to
domain-specific acceleration to keep up with user data and
demand in machine learning [4, 9, 13]. Whether those accel-
erators are implemented as special purpose ASICs, through
re-configurable hardware, or a combination of the two, there
is a need for tighter coordination between the algorithms and
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architectures. Unfortunately, hardware design cycles take
a significant amount of time and engineering effort, even
with extensive expertise. The natural abstraction in hard-
ware design is as static “modules” and the decomposition of
designs into these modules is at odds with the cross-layer
exploration required in this rapidly moving space. While
high-level synthesis certainly has a role to play, current tools
require both a great deal of developer hand holding (e.g.
through the addition of pragmas) and understanding of how
the compiler will interpret one’s C-code as hardware [15].
We explore an alternative approach where hardware de-

scription is explicitly under the control of the programmer
(by directly instantiating components such as adders and
memories), but at the same time standard software abstrac-
tions (such as functions, objects, and dictionaries) can be
leveraged to manage the complexity of the hardware. Under
such a model a natural question that arises is: how exactly
should one structure software to best abstract the hardware it
describes?
While there is no one single answer to this question, we

explore a general and reusable approach for generating pa-
rameterized hardware specifically in the context of a neural
network accelerator design. Building on PyRTL [6], a Python-
based hardware design framework, we present PyRTLMatrix,
a general purpose machine learning design pattern for the
instantiation of neural network primitives. PyRTL allows the
development of hardware to use the object-oriented struc-
ture of Python in interesting new ways while still preserving
our ability to reason about the hardware described through
execution. While these abstractions are helpful in encap-
sulating certain aspects of the complexity of the hardware
design, other cross-cutting issues (not typically faced in soft-
ware design) come to the fore. For example, the bitwidth of
operations inferred locally (e.g. two 4-bit numbers add to
a 5-bit number) and repeatedly can incrementally lead to
very sub-optimal designs. We describe the development of
PyRTLMatrix, including the ways in which the abstractions
it provides are useful, understandable, and composable and
the areas where unique use case of hardware development
presents new challenges for elaboration through execution.
This paper presents the following contributions:
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def __matmul__(self , other):

''' Performs the matrix multiplication

operation.

Is used with a @ b

:param PyRTLMatrix a: the first matrix.

:param PyRTLMatrix b: the second matrix.

:return: a PyRTL Matrix that contains the

dot product of the two PyRTL Matrices.

'''

result = PyRTLMatrix(self.rows , other.

columns)

for i in range(self.rows):

for j in range(other.columns):

for k in range(self.columns):

result[i, j] = mult.

fused_multiply_adder(self[i, k],

other[k, j], result[i, j])

result[i, j] = result[i, j][:32]

result.bits = len(result[0, 0])

return result

Figure 2. The implementation of the matrix multiply function. The
matrix-multiply function demonstrates the relative simplicity of
performing basic matrix operations in hardware.

• Wedemonstrate the use of object-oriented design (OOD)
principles to create high level hardware design pat-
terns in PyRTL.

• We present the PyRTLMatrix class as a hardware
design pattern for instantiating neural network accel-
erators.

Figure 1. Overview of our design flow. We transfer trained param-
eters from PyTorch to PyRTL, then compare the accuracy between
the two networks.

2 Designing Hardware Pythonically
Traditional Hardware Description Languages (HDLs), such
as Verilog have steep learning curves. PyRTL [6] is a Python-
based HDL and its overarching goals are simplicity, usability,
clarity, and extensibility. PyRTL includes classes for design,
simulation, and testing. Unlike other HDLs, PyRTL empha-
sizes clarity rather than optimization by providing modu-
larity and abstraction. By taking away some control from
the user and replacing it with an intermediate structure that
includes a complete tool chain, PyRTL gives the user a clear,
high-level understanding of the creation, analysis, and test-
ing of hardware.

@property

def bits(self):

''' Gets the number of bits

:return: the number of bits.'''

return self._bits

@bits.setter

def bits(self , bits):

''' Sets the number of bits.

:param int bits: The number of bits.'''

self._bits = bits

for i in range(self.rows):

for j in range(self.columns):

self[i, j]. bitwidth = self._bits

Figure 3. The decorator pattern is used to ensure a consistent
bitwidth among all items in the PyRTLMatrix.

3 The PyRTLMatrix class
The main operation in the inference step of a neural network
is the matrix multiplication between the input vector and
the matrix of weights in each layer. To intuitively create and
perform matrix operations, we designed the PyRTLMatrix
class. The PyRTLMatrix allows for the abstraction of hard-
ware necessary to create a hardware representation of matrix
operations. An instantiation of a PyRTLMatrix represents a
wire bus that directs data through various logical computa-
tions representing matrix operations. The matrix multiply
operation, displayed in Figure 2, implements an iterative solu-
tion utilizing base PyRTLmultiplication algorithms as well as
previously implemented base PyRTLMatrix functions. Cre-
ating hardware from an object-oriented perspective results
in a simpler function design. Additionally, the PyRTLMatrix
class implements the decorator pattern, a feature of the
Python programming language, to ensure equal bitwidth
across every element, as seen in Figure 3. In Figure 4, we rep-
resent all currently supported base PyRTLMatrix functions
with their equivalent mathematical expressions. Traditional
object-oriented design patterns allow testing of each function
individually and checking of correct results. Trade-offs arise
from the implementation from utilizing the PyRTLMatrix
class. Users are distanced from the hardware implementa-
tion and can replicate a software-like approach. In exchange
for relative simplicity and ease of access, the abstraction can
result in a loss of control and low-level understanding.

4 Evaluation
Our pipeline consists of two main components: the software
network in PyTorch [14] and the hardware implementation
in PyRTL, with shared trained parameters, as seen in Figure 1.
Our all-Python setup allows for intuitive translation between
the two networks. We use this setup to classify hand-written
numbers using the MNIST dataset [11].
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Operation PyRTL Matrix
A@B
Matrix Multiply __matmul__(self, B)

A * B
Element-Wise Multiply __mul__(self, B)

A + B
Element-Wise Add __add__(self, B)

AT

Transpose transpose(self, T)

x = A[k]
Get Element __getitem__(self, k)

A[k] = v
Set Element __setitem__(self, k, v)

Figure 4. An overview of the basic operations in the PyRTLMatrix
class. The functions take advantage of Python’s built-in “magic
methods” for more intuitive understanding. Abstracting hardware
into simplified operations allows for code reuse. Additionally, the
functions make test creation and error isolation easy.

PyTorch Forward Function
def forward(self , x):

out = x.view(BATCH_SIZE , -1)

for i in range(len(self.weights)):

out = self.weights[i](out)

out = self.relu(out , threshold)

return out

PyRTL Forward Function
def forward(self , x):

out = x

for i in range(len(self.weights)):

out = self.weights[i]. toMatrix ()@out

out = out + self.bias[i]. toMatrix ()

out = self.relu(out , int(threshold))

return matrix.argmax(out)

Figure 5. The forward function implemented within PyTorch and
PyRTL. Using the PyRTLMatrix class, the PyRTL code becomes sim-
pler despite integrating hardware designs. Through the application
of software design patterns, hardware design languages become
easier to understand.

Our PyTorchmodel has threemain parts: a layer of weights,
a non-linear activation function, and an argmax function for
the final classification. We train our software neural network
and collect the trained weights and biases. We maintain posi-
tive weights and input vectors clamped between [0,1] during
training and quantize them to ensure 8-bit integers are used
in the PyRTL design. We perform inference in PyTorch with
the forward function, as shown in the first row of Figure 5.
We implement an equivalent forward function in hard-

ware, using the PyRTLMatrix as our basic primitive. When
the design is simulated, the trained weights and biases for

each layer are first loaded from file into on-circuit memory
before the logic for the forward function is elaborated. This
implementation of the forward function in PyRTL is shown
in the second row of Figure 5, which shows weights, biases,
and the input vectors represented as PyRTLMatrix objects.

4.1 Case study
Our block matrix algorithm splits a single large multiplica-
tion into a series of smaller operations and accumulates the
final result. This is a variation to the PyRTL forward func-
tion presented in Figure 5. Although these implementations
are functionally equivalent, blocking allows us to examine
latency-area trade-offs. For example, our implementation
uses 16 smaller 10x49 block matrix multiplication blocks to
perform a single 784x10 matrix multiply. This experiment
also gives us the opportunity to observe the effects of in-
creased abstraction on hardware design.

I. Experiment: We first pad the 10-by-784 layer in the
network to be 800 columns across, to get more standard
block sizes, and then choose a list of factor pairs to deter-
mine several block sizes with which to test the network
design: 10 columns (80 multipliers), 16 columns (50 mul-
tipliers), 25 columns (32 multipliers), 50 columns (16 mul-
tipliers), and 160 columns (5 multipliers). Working with a
single layer feedforward neural network design, we record
performance metrics of our design for different block sizes
and plot the relationship between multiplier blocking, de-
sign area, and maximum clock frequency as seen in Figure
6. Measurements for area and clock frequency are made
with the area_estimation and TimingAnalysis functions
included in the PyRTL analysismodule. A 130nm technode
is assumed for all area measurements.

II. Analysis: As shown in Figure 6, the overall trends of
the experimental data indicate that a smaller block multiply
results in smaller logic area and a faster maximum clock
frequency. Area is plotted on the left vertical axis and max.
frequency on the right axis. It is important to note that, due
to the iterative nature of the block matrix algorithm in the
design, one image is processed fully on a single clock cycle.
This means that the exact same number of operations is

being performed on a single clock cycle between all the dif-
ferent “blocked” designs. The same number of fusedmultiply-
adders (FMAs) are built (blocking only reduces the number
of operations performed in sequence rather than in parallel),
meaning, we still perform the same number of multiplica-
tion operations.We analyze why area and frequency improve
with higher parallelization of matrix operations, despite re-
quiring the same number of hardware units.
Using block matrix multiplication results in a tree-like

structure in hardware where each block multiplication is
performed in parallel. The resulting WireVectors are added
together in a cascading series of element-wise vector adders.
Figure 7 demonstrates how the bitwidth of input and output
wires grow over a series of accumulations in a Kogge-Stone
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Figure 6. Block size vs. logic area, max. clock frequency. As we
use wider matrix blocks for matrix multiplication, the logic area
increases and the clock frequency declines. We generate a set of
multipliers to be executed in parallel. A smaller multiplier requires a
shorter accumulation over the width of thematrix, limiting bitwidth
and area, and allowing a faster overall process time per image.
From these trends, we see this increased parallelization improves
performance despite the fact that the same number of operations
must still be performed regardless of block size.

adder, the hardware adder used in the FMA. Specifically,
the Kogge-Stone adder grows in area at a rate of O(n logn),
where n is the bitwidth of the largest input wire. A longer row
results in increasingly larger adders across the row. Block
multiplication avoids longer accumulations, which limits
the bitwidth growth of the adder inputs and, by extension,
the area of the neural network as a whole. This iterative
tree generation is a specific example of a cross-cutting issue
that would not normally be encountered in either typical
software or hardware design. This intersection of hardware
and software practices has benefits and drawbacks.
Working at this high level of abstraction removes com-

plexity of hardware construction, since we can simply plug
in an existing hardware unit for a particular operation wher-
ever we need it, such as the PyRTLMatrix. Pulling out these
design patterns into discrete modules saves time and is in-
tuitive to reason about from a software perspective while
designing the hardware neural network.

However, this increased convenience comes at the cost of
the hardware sophistication. In software, matrix multiplica-
tion is typically an iterative function requiring nested loops.
Using the built-in matrix multiply of PyRTLMatrix, we can
build a hardware design replicating the software counterpart,
using the same set of nested loops (as shown in Figure 2). As
the experiment demonstrates, this is achieved by creating
as many hardware units as necessary through which the
data is passed until every iteration is replicated in hardware.
There is no inherent sequential logic- no unit is automatically
reused once it is instantiated, which can result in sprawling
and unoptimized designs. However, PyRTL still allows us to

delve deeper into each abstraction and reason about trade-
offs. A high-level abstraction like PyRTLMatrix allows for
rapid prototyping with the opportunity for advanced designs
provided that users properly analyze the design at the circuit
level.

(a) Half adder (b) Quarter Adder (c) Monolithic Adder

Figure 7. An overview of how bitwidth grows with the depth of an
adder tree. Each shaded cell indicates the bitwidth of a WireVector.
The connections indicate when a wire is being added to another
to yield a third, wider, wire. Here, an accumulation across a single
row of 8 elements in shown monolithically and broken down into
blocks two different ways. The two blocked additions, (a) and (b),
have smaller final bitwidths and shallower critical paths than the
monolithic operation, (c).

5 Related Work
Recently, there has been a tremendous growth in machine
learning acceleration [4, 5, 9] to keep up with the ever-
increasing demand for better performance.We do not present
a machine learning accelerator, but instead present hardware
design patterns to accelerate the prototyping and evaluation
of accelerators. We aim to improve the accessibility of com-
monly used hardware design patterns in ML accelerators.

High level synthesis (HLS) tools also allow developers to
abstract away complexities of hardware design to convert
high level code to hardware. Richmond et al., for example,
bring the power of higher order functions [15] to hardware
design using C/C++. It avoids the many difficulties associ-
ated with using traditional HDLs to design hardware, such
as low level programming, registers, scheduling, by utilizing
a syntax similar to modern software languages to provide a
higher level abstraction of hardware design. Similarly, SPA-
TIAL [10] is a domain specific language and compiler that
also allows for more productivity using software concepts
like nested loops, while still allowing access to lower level
concepts like memory hierarchy and memory transfers ex-
plicitly. There are other HLS tools like TABLA [13] that gear
specifically towards machine learning and act accelerator
generators for machine learning algorithms. However, un-
like TABLA, our work focuses more on a design flow, rather
than automatically generating hardware based on a specified
learning model.

Traditional HDLs like Verilog prove difficult to learn and
use, especially for software engineers, and lack the modu-
larity that allow reuse of components. Therefore other tools
that allow developers to design hardware usingmore familiar
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software-like interfaces have been developed. For our work,
we use PyRTL, but other projects would provide similar func-
tionality. Chisel [2] is an advanced hardware design language
embedded in Scala. Similar to PyRTL, it is object-oriented
and has type inference to further abstract from details of
hardware design. CλaSH [1] and Lava [3], are Haskell-based
functional HDLs the provide features like simulation, for-
mal verification and generation of code for implementable
circuits. MyHDL [7] uses Python generators and decorators,
looks similar to Verilog, and comes with a wide variety of
features like synthesis, simulation, test bench creation, and
optimization. PyMTL [12] andMamba [8], also Python-based,
provide a vertically integrated tool for functional-level, cycle-
level and register-transfer level modeling. While traditional
HDLs lack the abstraction and modularity needed to create
our reusable neural network functions, HDLs mentioned
here do support hardware design abstraction. We built our
neural network design pattern using PyRTL and the imple-
mentation of foundation classes, such as the PyRTLMatrix
class abstracted away the low-level details. This allowed
our process to behave more like HLS while still giving us con-
trol over writing and reusing of low-level hardware design
patterns.

6 Conclusion and Future Work
As compute-intensive workloads such as machine learning
grow in popularity, it is becoming clear that application
specific hardware accelerators are here to stay. Designing
algorithms and programming them quickly becomes key
when trying to keep up with new and emerging applications.
In this work, we make the position that there is a need to
accelerate the process of designing accelerators, and we do
this using hardware design patterns. PyRTLMatrix class
is based on object-oriented design principles and provides
reusable design primitives to quickly instantiate neural net-
work inference accelerators. The functions of this class
concisely describe neural network operations in hardware
and facilitate rapid prototyping of new algorithms and as-
sociated design trade offs. Looking ahead, hardware design
patterns and templates would be the first step toward au-
tomatic synthesis of machine learning accelerators. Future
studies would look to create automatic translation of Py-
Torch neural networks into HDLs like PyRTL. We would
also add more functions to the PyRTLMatrix class to support
convolution and pooling operations.
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