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Deep Learning Applications
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“AI is the new electricity” – Andrew Ng

Object Detection

Speech Recognition

Image Segmentation Medical Imaging

GamesText to Speech Recommendations



Deep Learning Landscape
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Training Inference



Deep Learning Landscape
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Training Inference

Conv.
Layer

Conv.
Layer

... Conv.
Layer

Pool.
Layer

FC
Layer

“Phoenix 
Convention 
Center”

Intermediate 
features

Convolutional Layers
(Feature Extraction)

Summarize features



Deep Learning Landscape
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Training Inference

Pool.
Layer

FC
Layer

Labelled Datasets

“Phoenix Convention Center”

Error

ML Practitioner
DNN Model

(Topology + Weights)



Computation Platforms
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Training Inference

On
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r 168 PE Array

ShiDianNao

Eyeriss

NVDLA

ARM Trillum

Apple Neural Engine
CambriconX

HPC cluster

Accelerators



Efficiency of Deep Learning Systems
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…
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X

YS

R
C

K

DNN Architecture Mapping (Dataflow) Microarchitecture
Runtime

Energy

Training Inference

How to design a DNN 
for the target task?

How to map billions of 
computations over limited

compute/memory resources?

How to design an 
efficient accelerator for 

the DNN model



What is Continuous Learning?
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Become better and faster 
with experience

Learn new tasks

Can we leverage 
Supervised Deep 

Learning?

Compute and 
energy-efficiency



Deep Learning Landscape
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Training Inference

Pool.
Layer

FC
Layer

Labelled 
Datasets

“Klaus Advanced 
Computing Building”

Error

ML PractitionerHPC cluster

Deep Learning not viable for 
continuous learning

DNN Model
(Topology + Weights)



Efficiency of Continuous Learning Systems
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…

C
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YS
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K

DNN Architecture Mapping (Dataflow) Microarchitecture
Runtime

Energy

Training Inference

How to autonomously 
update DNN models for 

continuous learning?

How to design an 
efficient accelerator for 
changing DNN models

How to efficiently map changing 
DNNs over accelerator?
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…

C

X

YS

R
C

K

DNN Architecture Mapping (Dataflow) Microarchitecture
Runtime

Energy

Training Inference

How to autonomously 
update DNN models for 

continuous learning?

How to design an 
efficient accelerator for 
changing DNN models

How to efficiently map changing 
DNNs over accelerator?
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• Continuous Learning Template

• Neuro-Evolutionary Algorithms
• Algorithm Description
• Characterizing NEAT

• Microarchitecture

• Evaluations

…

C

X

YS

R
C

K

DNN Architecture

How to autonomously 
update DNN models for 

continuous learning?

Ananda Samajdar, Parth Mannan, Kartikay Garg, and Tushar 
Krishna, GeneSys: Enabling Continuous Learning through 
Neural Network Evolution in Hardware,
MICRO 2018



Continuous Learning in Brains
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Constant synapse formation and pruning



Template for Continuous Learning
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Inference
Agent

Learning
Agent

Weights

Topology

Accumulated
Rewards

Environment

Action

Reward

Robust

Learn how 
to improve 
at one task

Learn multiple tasks

Continuous

This is Reinforcement Learning



Conventional RL: Challenges

June 23, 2019EMC2 Workshop, ISCA 2019                                               Tushar Krishna |  Georgia Institute of Technology

16

Deep NNs used internally

Not viable for continuous 
learning on the edge

Each�update�results�in�Backpropagation

! Manual hyperparameter tuning

! High compute requirement at every update

! High memory overhead

! Not scalable



Outline of Talk
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• Continuous Learning` Template

• Neuro-Evolutionary Algorithms
• Algorithm Description
• Characterizing NEAT

• Microarchitecture

• Evaluations

…

C

X

YS

R
C

K

DNN Architecture

How to autonomously 
design DNN models for 
continuous learning?

Ananda Samajdar, Parth Mannan, Kartikay Garg, and Tushar 
Krishna, GeneSys: Enabling Continuous Learning through 
Neural Network Evolution in Hardware,
MICRO 2018



Neuro-Evolutionary (NE) Algorithm

June 23, 2019EMC2 Workshop, ISCA 2019                                               Tushar Krishna |  Georgia Institute of Technology

18

Interaction with 
environment

Start

Stop

Desired fitness 
achieved?

Reproduce next 
generation

Generate intial 
population

Evaluate 
population fitness

Genetic algorithm

Yes

No
Fitness 

Function

Child Genomes

Parent Genomes

Population

Genome
Gene

Evolution
(Learning)

Interaction
(Inference)

Evolution
(Learning)

Interaction
(Inference)

Interaction
(Inference)

Neural Network (NN) expressed as a graph

Gene: Vertex or Edge 
in the graph

Genome: Collection of all 
genes (i.e., a NN) [1] Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through 

augmenting topologies. Evolutionary computation, 10(2), 99-127.

Fitness



Neuro-Evolutionary (NE) Algorithm
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Interaction with 
environment

Start

Stop

Desired fitness 
achieved?

Reproduce next 
generation

Generate intial 
population

Evaluate 
population fitness

Genetic algorithm

Yes

No
Fitness 

Function

Child Genomes

Parent Genomes

Neural Network (NN) expressed as a graph

Gene: Vertex or Edge 
in the graph

Genome: Collection of all 
genes (i.e., a NN)

Create parent pool

Add to offspring 
poolChoose parents MutationCrossover

Num 
offsprings 

= N?

START

STOP

Yes

Probability Probability

No

[1] Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through 
augmenting topologies. Evolutionary computation, 10(2), 99-127.

NeuroEvolution of Augmented Topologies (NEAT) [1]



Properties of NE algorithms

June 23, 2019EMC2 Workshop, ISCA 2019                                               Tushar Krishna |  Georgia Institute of Technology

20

Robustness

Change fitness function

No Training

Algorithmic Systems
Too much compute!

Convergence time?

Accuracy?

déjà vu! Looks like Deep Neural 
Networks in the 90s

HW solutions enabled 
Deep Learning

On
-c

hi
p

Bu
ffe

r 168 PE Array

Eyeriss GPU FPGA

Can we do the 
same with EA?
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• Continuous Learning

• Neuro-Evolutionary Algorithms
• Algorithm Description
• Characterizing NEAT

• Microarchitecture

• Evaluations

…

C

X

YS

R
C

K

DNN Architecture

How to autonomously 
design DNN models for 
continuous learning?

Ananda Samajdar, Parth Mannan, Kartikay Garg, and Tushar 
Krishna, GeneSys: Enabling Continuous Learning through 
Neural Network Evolution in Hardware,
MICRO 2018



Characterization of NEAT
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NEAT Python: https://github.com/CodeReclaimers/neat-python

NEAT - Python

Codebase

Environments

Mountain car Bipedal

Lunar Lander Cart pole

Airraid-RAM Alien-RAM Amidar-RAM

Ran each environment till 
convergence, multiple 
times

Only changed fitness 
function between 
workloads



Characterization of NEAT
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All operations are independent
Inference:
Population level parallelism (PLP)

Evolution:
Gene level parallelism (GLP)

Small workloads Large workloads

Distribution of Operations/Generation

Large operation level Parallelism



Operations in NEAT
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Crossover 

Src

Keys Attributes

Parent 1 Gene

Dest Wt En

Src

Prob

Parent 2 Gene

Dest Wt En

Src

Child Gene

Dest Wt En

Prob

Mutation 

Src

Keys Attributes

Dest Wt En

Original Gene

Src

Mutated Gene

Dest Wt En

Wt

Perturbation

Addition mutation
• Add new node
• Add new connection

Deletion mutation
• Delete connection
• Delete node

Simple operations

Evolution Inference

X

+

~
Activation

MAC
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Memory
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Small workloads Large workloads

125KB <1MB

Entire population can fit on-chip

Distribution of Memory footprint/Generation

Only need to store the weights and node info
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Entire population can fit on-chip
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Opportunity for Reuse

Fittest parent genome is used about ~10-20 times 
each generation

Even higher in certain cases

Distribution of Memory footprint/Generation

Only need to store the weights and node info



Properties of NE algorithms
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Robustness Massive 
Parallelism

Low Memory 
Footprint

Genes within a Genome

Genomes within Population

No backprop

No gradiant calculations 
or storage

Change fitness function

Only store genomes in 
current generation

Simple HW-
friendly Ops

MACs in Inference
Crossover and Mutation 
in Evolution

No Training

Algorithmic Systems

HW-SW Co-Design of NE makes them 
viable for continuous learning on edge



Motivating Hardware Solution
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Scalability Faster 
convergence

Power efficiency
More 

deployable 
compute

Target complex 
problems

Gene and 
Population level 

parallelism

Simple HW 
friendly operations

Hardware-Software codesign of NE makes them 
viable for continuous learning

Massive Parallelism
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• Continuous Learning

• Neuro-Evolutionary Algorithms
• Algorithm Description
• Characterizing NEAT

• Microarchitecture

• Evaluations

…

C

X

YS

R
C

K

DNN Architecture

How to autonomously 
update DNN models for 

continuous learning?

Ananda Samajdar, Parth Mannan, Kartikay Garg, and Tushar 
Krishna, GeneSys: Enabling Continuous Learning through 
Neural Network Evolution in Hardware,
MICRO 2018



Genome to NN 
Topology

Reward to Fitness

Gene Selector

PE PE PE PE PE PE PE…

Gene mergeGene split

Interconnect

Mutation and Crossover Probability

MAC

… MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MACMACMAC

Genome 3 …

Fitness[1] 
… 

Fitness[n]

Fitness[1] 
… 

Fitness[n]

Genome[1] 
… 

Genome[n]

Genome 2 Genome 1 
Fitness 1 Fitness 2 Fitness 3 

Genome 4
Fitness 4 

Action 
1

State 
1

Action 
n

State 
n…

1

2

3

4

Reward [1] 
… 

Reward [n]

67

9

10 Child 
genomes

Evolution Engine (EVE)

Array of DNN Accelerator 
Modules (ADAM)

Genome: Neural Network
Gene: Node or Connection

GeneSys SoC

n Environment Instances

DRAM

Genome Buffer 
(SRAM)

Genome n
Fitness n

Population Size = n

Tiny Core

Parent 
genomes8

5

GeneSys SoC

June 23, 2019EMC2 Workshop, ISCA 2019                                               Tushar Krishna |  Georgia Institute of Technology

30

GeneSys

Interacting agent

Learning agent

Interacting 
agent

Learning 
agent

Rewards

Updates

Ananda Samajdar, Parth Mannan, Kartikay Garg, and Tushar Krishna, GeneSys: Enabling Continuous 
Learning through Neural Network Evolution in Hardware, MICRO 2018



Evolution Engine: EvE Microarchitecture
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Interaction with 
environment

Start

Stop

Desired fitness 
achieved?

Reproduce next 
generation

Generate intial 
population

Evaluate 
population fitness

Genetic algorithm

Yes

No
Fitness 

Function

Child Genomes

Parent Genomes

Memory

…

Gene merge Gene split

Interconnect

Evolution Engine (EVE)

PE

Config
PRNG

PEPEPEPE

Selection

PE

Child 
Genomes

Parent 
Genomes

Genome

Reward

Inference 
Engine

Large number of PE to exploit parallelism

Interacting 
agent

Learning 
agent

Rewards

Updates



PE Microarchitecture
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Memory

…

Gene merge Gene split

Interconnect

Evolution Engine (EVE)

PE

Config
PRNG

PEPEPEPE

Selection

PE

Inference 
Engine

Child 
Genomes

Parent 
Genomes

Genome

Reward

Parent 1 
Gene

Crossover and 
Perturbation

Module

Delete Gene Mutation
Module

Add Gene Mutation
Module

Child 
Gene

Node ID
 regs

Random 
numbers

Mutation 
and 

Crossover 
Probabilites

Parent 2 
Gene

PRNG Config

Processing 
Element (PE)Genome: Neural Network

Gene: Node or Connection
Population Size = n

4 stage pipeline

One child per PE

Details of pipeline stages 
in the paper

One child gene 
processed per cycle



Inference Engine: ADAM Microarchitecture
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Interaction with 
environment

Start

Stop

Desired fitness 
achieved?

Reproduce next 
generation

Generate intial 
population

Evaluate 
population fitness

Genetic algorithm

Yes

No
Fitness 

Function

Child Genomes

Parent Genomes
Networks generated by 
NEAT are irregular (thus 
sparse)

Details later in 
talk!

Input vector buffer

Systolic array

Output vector buffer
Vectorize

Memory

Exploit Population Level 
Parallelism

Interacting 
agent

Learning 
agent

Rewards

Updates

Conventional  DNN 
Inference Accelerator
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• Continuous Learning

• Neuro-Evolutionary Algorithms
• Algorithm Description
• Characterizing NEAT

• Microarchitecture

• Evaluations

…

C

X

YS

R
C

K

DNN Architecture

How to autonomously 
update DNN models for 

continuous learning?

Ananda Samajdar, Parth Mannan, Kartikay Garg, and Tushar 
Krishna, GeneSys: Enabling Continuous Learning through 
Neural Network Evolution in Hardware,
MICRO 2018



Implementation
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Tech node 15nm
Num EvE PE 256
Num ADAM PE 1024
EvE Area 0.89 mm2
ADAM Area 0.25 mm2
GeneSys Area 2.45 mm2
Power 947.5 mW
Frequency 200 MHz
Voltage 1.0 V
SRAM banks 48
SRAM depth 4096

GeneSys Parameters
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Ar
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Number of EvE PE

EvE area SRAM area ADAM area M0 area



Evaluations
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Evaluations: Energy
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Evaluations: Runtime
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Faster convergence



Summary for GeneSys
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• Robust, Scalable and Energy efficient  solutions needed for 
continuous learning
• Look beyond DL and RL

• NEs offer promise
• Parallelism
• Low-memory Footprint
• HW friendly

• GeneSys: 100x – 100000x energy efficiency and performance 
• More deployable compute
• Enables AI solutions for a large gamut of problems
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…

C

X

YS

R
C

K

DNN Architecture Mapping (Dataflow) Microarchitecture
Runtime

Energy

Training Inference

How to autonomously 
design DNN models for 
continuous learning?

How to design an 
efficient accelerator for 
changing DNN models

How to efficiently map changing 
DNNs over accelerator?
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• Motivation
• Irregular Dataflows
• DNN Computation

• MAERI
• Abstraction
• Implementation
• Operation Example
• Mapping Strategies

• Evaluations

Microarchitecture

How to design an 
efficient accelerator for 
changing DNN models

Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna
MAERI: Enabling Flexible Dataflow Mapping over DNN Accelerators via Reconfigurable 
Interconnects: 
ASPLOS 2018, IEEE Micro Top Picks 2019 Honorable Mention



Myriad Dataflows in DNN Accelerators
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• DNN Topologies
• Layer size / shape
• Layer types: Convolution / Pool / FC / LSTM
• New sub-structure: e.g., Inception in Googlenet

• Compiler/Mapper
• Loop Scheduling

• Reordering and Tiling
• Mapping

• Output/Weight/Input/Row-stationary

• Algorithmic Optimization (e.g., Sparsity)
• Weight pruning
• GeneSys

Can we have one architectural 
solution that can handle 
arbitrary dataflows and 
provides ~100% utilization?



What is the computation in a DNN?
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Independent multiplication

…
Input Activation

Filter

Output Activation

0 0

CONV Layer

……

W0
W1
W2

Slide
X0

X1

X2

Xk

Σ(WiXi)

W0

W1

W2

Wk

Inputs

Neuron

Out

Output
Weights

…

Compute weighted sum
Accumulation of partial products

Our Key insight: Each DNN/dataflow translates into neurons of different sizes 



Layer 1 Layer 2

Pruning

Removed Weight

Layer 1 Layer 2Layer 1 Layer 2

Irregular Dataflow: Pruning
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X0
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X2

Σ(WiXi)
W0

W1

W2

Neuron

Out

X0

X2

Σ(WiXi)
W0

W2

Neuron

Out

Our Key insight: Each DNN/dataflow translates into neurons of different sizes 

Example: Weight Pruning (Sparse Workload)
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• Motivation
• Irregular Dataflows
• DNN Computation

• MAERI
• Abstraction
• Implementation
• Operation Example
• Mapping Strategies

• Evaluations

Microarchitecture

How to design an 
efficient accelerator for 
changing DNN models



The MAERI Abstraction
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Prefetch
Buffer
X X X XX X X X

+
+
+

+
+

+ +

Weight / Input

Output

Multiplier Pool

Adder Pool
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X0

X1

X2
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Inputs

Neuron

Out

Output
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…

Virtual Neuron (VN): Temporary 
grouping of compute units for an output

How to enable 
flexible grouping?

Need flexible 
connectivity!
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• Motivation
• Irregular Dataflows
• DNN Computation

• MAERI
• Abstraction
• Implementation
• Operation Example
• Mapping Strategies

• Evaluations

Microarchitecture

How to design an 
efficient accelerator for 
changing DNN models

Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna
MAERI: Enabling Flexible Dataflow Mapping over DNN Accelerators via Reconfigurable 
Interconnects: 
ASPLOS 2018, IEEE Micro Top Picks 2019 Honorable Mention



The MAERI Implementation
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From/To 
DRAM

Simple Switch

Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna
MAERI: Enabling Flexible Dataflow Mapping over DNN Accelerators 
via Reconfigurable Interconnects: 
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• Motivation
• Irregular Dataflows
• DNN Computation

• MAERI
• Abstraction
• Implementation
• Operation Example
• Mapping Strategies

• Evaluations

Microarchitecture

How to design an 
efficient accelerator for 
changing DNN models

Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna
MAERI: Enabling Flexible Dataflow Mapping over DNN Accelerators via Reconfigurable 
Interconnects: 
ASPLOS 2018, IEEE Micro Top Picks 2019 Honorable Mention
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• [Communication] Distribute weights and inputs (image pixels) to 
multiplier switches
• Assume: weight stationary, conv reuse of inputs via local links

• [Computation] Compute partial sums

• [Computation] Reduce partial sums

• [Communication] Collect outputs to buffer
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<Step 1>
Virtual Neuron 
Construction

VN size = 5

Sparse Weight Filter

Controller configures 
the switches

W00 W01
W10 W11

W02
0
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<Step 2>
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<Step 4>
Partial sum 
reduction
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<Step 5>
Sliding Window
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• Motivation
• Irregular Dataflows
• DNN Computation

• MAERI
• Abstraction
• Implementation
• Operation Example
• Mapping Strategies

• Evaluations

Microarchitecture

How to design an 
efficient accelerator for 
changing DNN models

Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna
MAERI: Enabling Flexible Dataflow Mapping over DNN Accelerators via Reconfigurable 
Interconnects: 
ASPLOS 2018, IEEE Micro Top Picks 2019 Honorable Mention
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Our Key insight: Each DNN/dataflow translates into neurons of different sizes 
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Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna
MAERI: Enabling Flexible Dataflow Mapping over DNN Accelerators via Reconfigurable 
Interconnects: 
ASPLOS 2018, IEEE Micro Top Picks 2019 Honorable Mention

Z. Zhao, H. Kwon, S.Kuhar, W. Sheng, 
Z. Mao, T. Krishna
Efficient Mapping Space Exploration 
on a Reconfigurable Neural 
Accelerator
ISPASS 2019

~100% Utilization
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• Motivation
• Irregular Dataflows
• DNN Computation

• MAERI
• Abstraction
• Implementation
• Operation Example
• Mapping Strategies

• Evaluations

Microarchitecture

How to design an 
efficient accelerator for 
changing DNN models

Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna
MAERI: Enabling Flexible Dataflow Mapping over DNN Accelerators via Reconfigurable 
Interconnects: 
ASPLOS 2018, IEEE Micro Top Picks 2019 Honorable Mention
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MAERI reduces energy upto 57% and 28% in average compared to Row-Stationary 
(dense dataflow) and 7.1% in average compared to Systolic Array (sparse dataflow)

* Normalized to MAERI energy with Alexnet C1
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•DNN models evolving rapidly
•Multiple layer types
• Sparsity Optimizations
•Myriad dataflows for scheduling and mapping

•MAERI enables dynamic grouping of arbitrary number 
of MACCs (“Virtual Neuron”) via reconfigurable, non-
blocking interconnects, providing
• Future proof to DNN models and dataflows
• Near 100% compute unit utilization
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AI will be pervasive
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