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Deep Learning Applications

“Al is the new electricity” — Andrew Ng

Object Detection Image Segmentation Medical Imaging
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Deep Learning Landscape
B
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Deep Learning Landscape

Training

Convolutional Layers Summarize features

(Featurel Extraction)

“Phoenix

Center”

Intermediate
features
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Convention
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Deep Learning Landscape

- Inference =
b-2a

Labelled Datasets
ML Practitioner
(Topology + Weights)

Mg e | / ‘ i Pool.
S = Layer
I(4 H H 1.4
Phoenix Convention Center

DNN Model

EMC2 Workshop, ISCA 2019 Tushar Krishna | Georgia Institute of Technology June 23, 2019



Computation Platforms

Training

‘ Inference

HPC cluster

EMC2 Workshop, ISCA 2019

Tushar Krishna | Georgia Institute of Technology

ARM Trillum
NVDLA

Apple Neural Engine

Eyeriss

Accelerators
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Efficiency of Deep Learning Systems
NS

C
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DNN ;E\itecture Mapping (Dataflow) Microarchitecture :_

How to map billions of J

efficient accelerator for
the DNN model

computations over limited

compute/memory resources?

How to design a DNN
for the target task?

How to design an }
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What is Continuous Learning?

PR k.* T‘"

EMC2 Workshop, ISCA 2019

Tushar Krishna | Georgia Institute of Technology

Become better and faster
with experience

Compute and

energy-efficiency

@
@

/
Can we leverage

Supervised Deep
Learning?

.

4

June 23, 2019




Deep Learning not viable for
continuous learning

Deep Learning Landscape

Inference

ML Practitioner

EMC2 Workshop, ISCA 2019 Tushar Krishna | Georgia Institute of Technology June 23, 2019

“Klaus Advanced
Computing Building”




Efficiency of Continuous Learning Systems

{ aining }-}{ nference J

C
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M B (oo0s Imm
Y QQQ8
v <T> _ O 3+ Q
DNN ;E\itecture Mapping (Dataflow) Microarchitecture :_

How to design an
efficient accelerator for
changing DNN models

How to autonomously
update DNN models for

continuous learning?

How to efficiently map changing
DNNs over accelerator?
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Outline of Talk

[/ e b | \ |
D @ o

 / 3 X . - O Q
DNN Architecture Mapping (Dataflow) Microarchitecture :

How to autonomously
update DNN models for
continuous learning?

How to design an
efficient accelerator for
changing DNN models

GeneSys “*MAERI
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How to efficiently map changing
DNNs over accelerator?




Outline of Talk

e Continuous Learning Template

Ananda Samajdar, Parth Mannan, Kartikay Garg, and Tushar
Krishna, GeneSys: Enabling Continuous Learning through

Neural Network Evolution in Hardware,
MICRO 2018

* Neuro-Evolutionary Algorithms
e Algorithm Description
e Characterizing NEAT

DNN Architecture * Microarchitecture

How to autonomously

update DNN models for e Evaluations
continuous learning?

GeneSys

EMC2 Workshop, ISCA 2019 Tushar Krishna | Georgia Institute of Technology

June 23, 2019



Continuous Learning in Brains
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Newhorn 1Month 9 Months 2 Years

Constant synapse formation and pruning
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Template for Continuous Learning

' | >

MARIOD WORLD TIME
000000 1 x00 1-1 379

Learning Weights Inference

Agent Agent

Accumulated
Rewards

Learn how
to improve
at one task

Learn multiple tasks

This is Reinforcement Learning
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Conventional RL: Challenges

Deep NNs used internally

| Manual hyperparameter tuning

Each update results in Backpropagation

| High compute requirement at every update

| High memory overhead

e _

EMC2 Workshop, ISCA 2019 Tushar Krishna | Georgia Institute of Technology June 23, 2019



Outline of Talk

e Continuous Learning Template

Ananda Samajdar, Parth Mannan, Kartikay Garg, and Tushar
Krishna, GeneSys: Enabling Continuous Learning through
Neural Network Evolution in Hardware,

MICRO 2018

* Neuro-Evolutionary Algorithms
e Algorithm Description
e Characterizing NEAT

DNN Architecture * Microarchitecture

design DNN models for
continuous learning?

* Evaluations

How to autonomously }

GeneSys

EMC2 Workshop, ISCA 2019 Tushar Krishna | Georgia Institute of Technology
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Neuro-Evolutionary (NE) Algorithm

Populatio/
|
|

Generate intial
population

Child Genomes

Interaction with
environment

Reproduce next
generation

Genetic algorithm

£ g

No Parent Genomes

(ATXXLAAL,

(KATLAARAL,

Genome «—

Gene . . . . .
Interaction Evolution Interaction Evolution Interaction

(Inference) (Learning) (Inference) (Learning) (Inference)

Neural Network (NN) expressed as a graph

Gene: Vertex or Edge Genome: Collection of all
in the graph genes (I'e" d NN) [1] Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through
menting topologies. Evolution m jon. 10(2 -127.
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Neuro-Evolutionary (NE) Algorithm

Generate intial /
population v

Child Genomes
S Create parent pool | propapility Probability
! / population fitness / 1 : :
iarmciion it | e L | > | |
environment ‘ Reproduce next / | Y v v
| generation i 7
SR enatic algorithm . Add to offsprin
Fitness oaneicagri Choose parents » Crossover » Mutation > Pring
Function No  Parent Genomes pOOI

Neural Network (NN) expressed as a graph NeuroEvolution of Augmented Topologies (NEAT) [1]
Gene: Vertex or Edge Genome: Collection of all
in the graph genes (i.e., a NN)

[1] Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through
menting topologies. Evolution m jon. 10(2 -127.
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Properties of NE algorithms

Algorithmic

I%I

Accuracy?

Systems

Too much compute!

Convergence time?

déja vu! Looks like Deep Neural
Networks in the 90s

Eyeriss GPU FPGA

HW solutions enabled Can we do the
Deep Learning same with EA?

EMC2 Workshop, ISCA 2019 Tushar Krishna | Georgia Institute of Technology June 23, 2019



Outline of Talk

* Continuous Learning

Ananda Samajdar, Parth Mannan, Kartikay Garg, and Tushar
Krishna, GeneSys: Enabling Continuous Learning through
Neural Network Evolution in Hardware,

MICRO 2018

* Neuro-Evolutionary Algorithms
e Algorithm Description
e Characterizing NEAT

DNN Architecture  Microarchitecture

How to autonomously

design DNN models for e Evaluations
continuous learning?

GeneSys

EMC2 Workshop, ISCA 2019 Tushar Krishna | Georgia Institute of Technology
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Characterization of NEAT

/
( ) /
/ Ran each environment till
NEAT - Python ,' convergence, multiple
/ Mountain car Bipedal times
\_ y, /
Codebase /
e
Cart pole
Only changed fitness
; function between
Environments
\ . workloads
\
\
\ _ _ _
EMC2 Workshop, ISCA 2019 Tushar Krishna | Georgia Institute of Technology June 23, 2019

NEAT Python: https://github.com/CodeReclaimers/neat-python



Characterization of NEAT

ComPUtatlons Distribution of Operations/Generation
acrobot 020 — aif‘raid_ram
bivedal = alien_ram
0.6 P = amidar_ram
" 1 L>)~ - cartpole_v0 30 15
P - = |unar_lander c
£ 0.8 o - 2
e o 0.4 o
T 06 L Lo
= g g
© = =
g 04 § o2 £
5 * Cartpole © Lunar Lander o) o 005
202 o Mountain Car X Asterix Ram o o
| | | |
0 0.0 0.00
0 10 20 7205 210 215 220 225
0 204060 8OGen£?gtion12° 140160 180 200 Thousand ops per generati Thousand ops @@r generation
Small workloads Large wdlkloads
. >20K

Inference: >200K

All operations are independent

Population level parallelism (PLP)
: Large operation level Parallelism
Evolution:

Gene level parallelism (GLP

EMC2 Workshop, ISCA 2019 Tushar Krishna | Georgia Institute of Technology June 23, 2019




Operations in NEAT

Evolution Mutation

le Keys |

Crossover

Keys  Attributes

VI‘

x

LI < VI‘

__Attributes

»
|

Wt En

En

Parent 1 Genei

E Original Gene E

Parent 2 Gene

Perturbation

Prob

Mutated Gene

Child Gene

Inference

Addition mutation
e Add new node
e Add new connection

(x
(o

MAC
Deletion mutation
* Delete connection @
e Delete node . .
Activation

Simple operations

EMC2 Workshop, ISCA 2019

Tushar Krishna | Georgia Institute of Technology

June 23, 2019



Characterization of NEAT

Memory

x Air Raid Ram * Alien Ram = Asterix Ram
120000 o CartpolevO0  © Lunar Lander ° MountainCar
118000 02005

Q6000 S

C 114000 * S

Q
112000
O

110000 Large workloads
E 108000
- 8000%
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Relative frequency
©c o ©
() — —
~ o N
(@)] o (@]

0.050
0.025

0.000

Distribution of Memory footprint/Generation

Small workloads

= acrobot .
bipedal 004 — al|e.n_ram

—— cartpole_v0 > . === amidar_ram
= |unar_lander S

3 0.03

o

)

= 0.02

®©

©

o

/\/\ 0.01

25 50 75 100
Memory in Kilo bytes

Large workloads
0.05

= airraid_ram

1 0'00860 880 900 920 940
Memory in Kilo bytes

125KB <1MB

Entire population can fit on-chip

Only need to store the weights and node info
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Characterization of NEAT

Memor o . :
Y Distribution of Memory footprint/Generation
Opportunity for Reuse Small workloads Large workloads
0.05 T
X Acrobot X Airrad ram X Alien RAM 0.175 == acrobot S alfrald_ram
90 X Cartpole v0 X Lunar Lander X Mountain Car 0.150 — bipedal - a“e_n_ram

Q > —— cartpole_v0 >004 e amidar_ram

» 80 2 0.125 = o

= g = |unar_lander S

o 70 X X X 3 S

(-4 g 0.100 80'03

< E’ 0.075 ?

o £ 2002

T 2 0.050 2

o c 0 2

@ 0.025 /\/\ 001

e

= 0.000

™

0 25 50 75 100 1 00g60 ™ 880 900 920 940
Memory in Kilo bytes Memory in Kilo bytes

Generation 125KB <1MB

Fittest parent genome is used pbout ~10-20 times . ] ] .
each generation Entire population can fit on-chip

Even higher in certain cases Only need to store the weights and node info
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Properties of NE algorithms
Algorithmic Systems

Massive Low Memory

Parallelism

Footprint

Genomes within Population Only store genomes in
current generation

Genes within a Genome

Simple HW-
i fk"\r‘a:&fui’%‘,\'m N O b a C k p ro p c
% friendly Ops
an.i
T No gradiant calculations MACs in Inference
or storage Crossover and Mutation

: in Evolution
HW-SW Co-Design of NE makes them
mczwereon ezt yviable for continuous learning on edge June 23,2019




Motivating Hardware Solution

Massive Parallelism ‘ Scalability m—) Faster

convergence
Gene and
Population level
_  parallelism
More . |
Power efficiency mmmm) deployable mmm) larget bclomp ex
Simple HW compute problems
friendly operations

EMC2 Workshop, ISCA 2019 Tushar Krishna | Georgia Institute of Technology June 23, 2019



Outline of Talk

* Continuous Learning

Ananda Samajdar, Parth Mannan, Kartikay Garg, and Tushar
Krishna, GeneSys: Enabling Continuous Learning through
Neural Network Evolution in Hardware,

MICRO 2018

* Neuro-Evolutionary Algorithms
e Algorithm Description
e Characterizing NEAT

DNN Architecture  Microarchitecture

How to autonomously

update DNN models for e Evaluations
continuous learning?

GeneSys

EMC2 Workshop, ISCA 2019 Tushar Krishna | Georgia Institute of Technology
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GeneSys SoC

n Environment Instances

Genome: Neural Network
Gene: Node or Connection
Reward [n] Population Size = n

e GeneSys SoC

Evolution Engine (EVE)

Reward [1]

y Tiny Core [ Mutation and Crossover Probability

[MAC] [Reward to Fitness]—T ﬁ E
[MAC] <«—- Genome to NN 9

Learning agent

<

L‘ Topology
MAC] [MAC | | MAC ﬂ Gene Selector Gene split
J . A J A

Fitness[1] 1 O el
genomes

Fitness[1]

Array of DNN Accelerator Genome[1]

Modules (ADAM) . . .
Genomeln] Fitness|n] Fitness[n]

Genome 1 Genome 2 Genome 3 Genome 4
Fitness 1 Fitness 2 Fitness 3 Fitness 4

Genome n
Fitness n

Interacting Learning DRIAM G e n e Sys

agent agent

Ananda Samajdar, Parth Mannan, Kartikay Garg, and Tushar Krishna, GeneSys: Enabling Continuous
Learning through Neural Network Evolution in Hardware, MICRO 2018

Updates
June 23, 2019
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Evolution Engine: EVE Microarchitecture

Large number of PE to exploit parallelism

Inference
- Engine
T
Child Genomes .

R . 1 Child Parent Reward

/ popuiton iness ' Genomes Genomes

Interaction with e EOere Drreeeeee ) ,’/ ( = - - )

erenmen y 4 [Gene merge) [ Gene split HSeIectlon)
_ T Genetic algorithm V
Fitness — ‘
Function o Parent Genomes

d% d% dg d% ¢ﬂ ﬂ
(Pe ) (pe) (Pe) (pe] [PE) - é@

Interacting Learning ' J

agent agent . Evolution Engine (EVE)

Updates
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. .
PE Microarchitecture

ipeli .\ PRNG ! Config |
cerormd Inference¥|Stage pipeline (_PRNG A Sonfig
[ Memory ]—> Engine Random Mutation
: _ ) Crossover and numbers c and
Child 4 Parent Reward ' Perturbation < Pr(r)%sasbc?l\i/teers
Genomes Genomes ) . Module < —
[Gene mergeJ [ Gene split HSeIection] " *
A Y p .
Interconnect " Delete Gene Mutation LRI [0 per PE

S - —

(Pe ) (Pe) (Pe) [Pe] (PE) - [PE] l sl s
JR— ! , = Processed per cycle
 PRNG ; . Add Gene Mutation
(.Config . Module

Evolution Engine (EVE) by
) A T Processing
Genome: Neural Network Parent 2 v Element (PE)
Gene: Node or Connection Parent 1 Gene Child . ) )
Population Size = n Gone Gene Details of pipeline stages

in the paper



Inference Engine: ADAM Microarchitecture

Conventional DNN
Inference Accelerator
Exploit Population Level
Parallelism

Generate intial /
population

! Evaluate
H population fitness
! )

Child Genomes

inter: i ;
enviroriment v 1 Reproduce next
i generation

Fitness
Function

No Parent Genomes

Updates

Genetic algorithm .- -

Input vector buffer

————————————————————————————————————

____________________________________

| v v
I e B e B
Systolic array ‘

Vectorize 4'} |

Output vector buffer

Networks generated by
NEAT are irregular (thus
sparse)

Details later in
talk!

EMC2 Workshop, ISCA 2019

Tushar Krishna | Georgia Institute of Technology

June 23, 2019



Outline of Talk

* Continuous Learning

Ananda Samajdar, Parth Mannan, Kartikay Garg, and Tushar
Krishna, GeneSys: Enabling Continuous Learning through
Neural Network Evolution in Hardware,

MICRO 2018

* Neuro-Evolutionary Algorithms
e Algorithm Description
e Characterizing NEAT

DNN Architecture  Microarchitecture

How to autonomously

update DNN models for e Evaluations
continuous learning?

GeneSys

EMC2 Workshop, ISCA 2019 Tushar Krishna | Georgia Institute of Technology
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Implementation
GeneSys Parameters
Tech node 15nm
Num EVE PE 256
Num ADAM PE |1024
EVE Area 0.89 mm?2
ADAM Area 0.25 mm2
GeneSys Area |2.45 mm?2
Power 947.5 mW
Frequency 200 MHz
Voltage 1.0V
SRAM banks |48
SRAM depth 4096

EMC2 Workshop, ISCA 2019

ADAM
(Systolic
Array)

15um

I MAC
PE

S
=]
o)
L

Il EVE area B SRAM area B ADAM area O MO area

T

2 4 8 16 32 64 128 256 512

4
3.5

Areain mm?2
¢ = N
(6] = (6] N (6] w

o
o

Number of EVE PE

Tushar Krishna | Georgia Institute of Technology
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Evaluations

Legend Inference Evolution Platform

CPU_a Serial Serial 6th gen 17

CPU_b PLP Serial 6th gen 17
GPU_a BSP PLP Nvidia GTX 1080

GPU_b BSP + PLP PLP

CPU c Serial
CPU d PLP
GPU c¢ BSP

Serial

Serial
PLP

GPU_d BSP + PLP PLP

GENESYS PLP

PLP + GLP

Nvidia GTX 1080
ARM Cortex AS57
ARM Cortex AS7
Nvidia Tegra
Nvidia Tegra
GENESYS

PLP (GLP) - Population (Gene) Level Parallelism
BSP - Bulk Synchronous Parallelism (GPU)

EMC2 Workshop, ISCA 2019

Tushar Krishna | Georgia Institute of Technology
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Evaluations: Energy

oCPU_a OCPU c AGPU a AGPU c x Genesys o CPU_b
o o o RS
O O | &
N S &
N o o °F N B
N A c‘
= N & A N A
£ A A A Y9
> 00 O
o Q o
2 & 5 v
I.I:.I QQX 10 X x0 X

EMC2 Workshop, ISCA 2019

Evolution per generation

Tushar Krishna | Georgia Institute of Technology

GPU b + CPU d

+00
+
+

Inference per generation

3

>O

o GPU_d

June 23, 2019




. .
Evaluations: Runtime

OoCPU_a OCPU c AGPU_a AGPU_c x Genesys OCPU b GPU b +CPU_d oGPU_d x GENESYS
> o o & NV o o O
& Q o S & g o ) )
o ) & A 0 g ] A
Mool A NN a A -
& o (e} = & & ]
Q 7'y Q A P~ o
Q S @ o
v AR o o X X X
2 QQ‘(' 90 () X
7N & AR
v S X X X & X
S & Q
b= QQ v N 00‘
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> Q % \)
2 & Q
O NS Q’\'
0 Q’X
Y XQQ S o
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Evolution per generation Inference per g Fa Ste r conve rge nce
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Summary for GeneSys

* Robust, Scalable and Energy efficient solutions needed for
continuous learning
* Look beyond DL and RL

* NEs offer promise

* Parallelism
* Low-memory Footprint
e HW friendly

* GeneSys: 100x — 100000x energy efficiency and performance
* More deployable compute
* Enables Al solutions for a large gamut of problems

EMC2 Workshop, ISCA 2019 Tushar Krishna | Georgia Institute of Technology June 23, 2019



Outline of Talk

[/ e b | \ |
D @ o

 / 3 X . - O Q
DNN Architecture Mapping (Dataflow) Microarchitecture :

How to autonomously
design DNN models for
continuous learning?

How to design an
efficient accelerator for
changing DNN models

GeneSys {*MAERI

EMC2 Workshop, ISCA 2019 Tushar Krishna | Georgia Institute of Technology June 23, 2019

How to efficiently map changing
DNNs over accelerator?




Outline of Talk
Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna

* Motivation
MAERI: Enabling Flexible Dataflow Mapping over DNN Accelerators via Reconfigurable

¢ I rl"egu Ia I" Dataﬂ OWS Interconnects:
. ASPLOS 2018, IEEE Micro Top Picks 2019 Honorable Mention
* DNN Computation

* MAERI g :m:
e Abstraction

* Implementation

* Operation Example
* Mapping Strategies

Microarchitecture

How to design an
efficient accelerator for
changing DNN models

"*"MAERI

EMC2 Workshop, ISCA 2019 Tushar Krishna | Georgia Institute of Technology June 23, 2019

* Fvaluations




Myriad Dataflows in DNN Accelerators
* DNN Topologies

* Layer size / shape
 Layer types: Convolution / Pool / FC / LSTM
* New sub-structure: e.g., Inception in Googlenet

* Compiler/Mapper
* Loop Scheduling
* Reordering and Tiling
* Mapping
* Output/Weight/Input/Row-stationary Can we have one architectural

solution that can handle

e Algorithmic Optimization (e.g., Sparsity)
* Weight pruning

arbitrary dataflows and
* GeneSys provides ~100% utilization?

EMC2 Workshop, ISCA 2019 Tushar Krishna | Georgia Institute of Technology June 23, 2019



What is the computation in a DNN?

Independent multiplication — Wo

Neuron
2 (WiXi)
Inputs Weights Output :
Compute weighted sum CONV Layer

Accumulation of partial products

Our Key insight: Each DNN/dataflow translates into neurons of different sizes

EMC2 Workshop, ISCA 2019 Tushar Krishna | Georgia Institute of Technology June 23, 2019



Irregular Dataflow: Pruning

Example: Weight Pruning (Sparse Workload)

Neuron

— Removed Weight

Layer 1 Layer2

Our Key insight: Each DNN/dataflow translates into neurons of different sizes

EMC2 Workshop, ISCA 2019 Tushar Krishna | Georgia Institute of Technology

June 23, 2019



Outline of Talk

* Motivation
* |Irregular Dataflows
* DNN Computation

* MAERI

e Abstraction

* Implementation

* Operation Example
* Mapping Strategies

* Fvaluations

EMC2 Workshop, ISCA 2019

=@

Microarchitecture

How to design an
efficient accelerator for
changing DNN models

|

‘*MAERI

Tushar Krishna | Georgia Institute of Technology
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The MAERI Abstraction

Output
Inputs Weights utpu

Multiplier Pool @ © @ @ (X M x M x WX

Adder Pool

VNO

©

VN1 VN2
© O ©O
©

Virtual Neuron (VN): Temporary
grouping of compute units for an output

EMC2 Workshop, ISCA 2019

Tushar Krishna | Georgia Institute of Technology

#*MAERI

How to enable
flexible grouping?

Need flexible
connectivity!

June 23, 2019



Outline of Talk
Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna

* Motivation
MAERI: Enabling Flexible Dataflow Mapping over DNN Accelerators via Reconfigurable

* |Irregular Dataflows Interconnects:
i ASPLOS 2018, IEEE Micro Top Picks 2019 Honorable Mention
* DNN Computation

* MAERI | g :m:
e Abstraction

* Implementation

* Operation Example
* Mapping Strategies

Microarchitecture

How to design an
efficient accelerator for
changing DNN models

‘*MAERI
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* Fvaluations




The MAERI Implementation

<_
Distribution Tree
<_
p -
Q
o -
[
c
o) Inputs
@)
) -
o
]
®©
) -
ko)
[0}
9 From/To
< — DRAM
Weights

Augmented Reduction Tree

Dataflow Legend Activation Units

(from CPU) @ Simple Switch

€ Multiplier Switch

8 Adder Switch Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna
MAERI: Enabling Flexible Dataflow Mapping over DNN Accelerators
: ) , Outputs
Lookup via Reconfigurable Interconnects:
% Table ASPLOS 2018, IEEE Micro Top Picks 2019 Honorable Mention
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The MAERI Implementation

Distribution Network
* Spatial Reuse via Multicasts

ko * High Bandwidth via fat links
Ie)

= i

o Inputs

@)

o)

©

<@

3 From/To

b <+ DRAM

Weights

Augmented Reduction Tree

Dataflow Legend Activation Units
(from CPU) @ Simple Switch

€ Multiplier Switch
8 Adder Switch
% Lookup
Table
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The MAERI Implementation

Distribution Tree

|-
Q2
o
P
firw)
=
o
@)
| -
O
-+
©
.
@
)
(®)
O
<

Augmented Reduction Tree

Dataflow Legend
(from CPU) @ Simple Switch

€ Multiplier Switch

8 Adder Switch

% Lookup
Table

EMC2 Workshop, ISCA 2019

Activation Units

Local FIFOs for
Temporal Reuse i.e.

“stationary”

Tushar Krishna | Georgia Institute of Technology

From/To
DRAM

Weights

Outputs

June 23, 2019




The MAERI Implementation

Distribution Tree

1]
Linear Local Network

* Forwarding of weights
e Spatio-Temporal Reuse

From/To
DRAM

.
Qo
I
=

c

o
@)

| -

O
-+

©

.
L)

)

®)

&)
<

Weights

Augmented Reduction Tree

Dataflow Legend
(from CPU) @ Simple Switch

€ Multiplier Switch

Activation Units

& Adder Switch
% Lookup
Table
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The MAERI Implementation

Distribution Tree

Accelerator Controller

. Augmented Reduction Tree

Dataflow Legend
(from CPU) @ Simple Switch

€ Muttiplier Switch

& Adder Switch

% Lookup
— Table

EMC2 Workshop, ISCA 2019

Activation Units

Tushar Krishna | Georgia Institute of Technology

Reduction Network

* High Bandwidth via fat links

* Provably Non-blocking Reductions
via forwarding links

Outputs

June 23, 2019




The MAERI Implementation

--------------------------------------------------------------------------------- . Distribution Network

: e Spatial Reuse via Multicasts
e High Bandwidth via fat links
<[]
Linear Local Network

* Forwarding of weights
e Spatio-Temporal Reuse

Reduction Network
* High Bandwidth via fat links
* Provably Non-blocking Reductions

via forwarding links
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From/To

.
Q2
I
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Local FIFOs for

Dataflow Legend
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€ Multiplier Switch

Activation Units

8 Adder Switch Temporal Reuse i.e.
. Outputs
Eg|Lockup “stationary” P
I Table
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Outline of Talk

. . .
IVl Ot I Vat I O n Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna
MAERI: Enabling Flexible Dataflow Mapping over DNN Accelerators via Reconfigurable
* |Irregular Dataflows Interconnects:

ASPLOS 2018, IEEE Micro Top Picks 2019 Honorable Mention

* DNN Computation

* MAERI | g :ﬂ:
e Abstraction

* Implementation

* Operation Example
¥ « Mapping Strategies

Microarchitecture

How to design an
efficient accelerator for
changing DNN models

‘*MAERI
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* Fvaluations
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Example: Computing a CONV layer

* [Communication] Distribute weights and inputs (image pixels) to
multiplier switches

* Assume: weight stationary, conv reuse of inputs via local links

e [Computation] Compute partial sums
e [Computation] Reduce partial sums

* [Communication] Collect outputs to buffer

EMC2 Workshop, ISCA 2019 Tushar Krishna | Georgia Institute of Technology June 23, 2019



MAERI Operation Example

Sparse Weight Filter

Woo | Wo1 | Wo2

W10 | W11 0
- Filter
3 ={we @

O | we | @
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Slides
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X20 | X21 | X22 | Xas
X30 | X31 | X32 | Xa3
Input Activation
Wo1 o Xo1
W11 ° X1

Output Activation
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MAERI Operation Example

Distribution Tree

Accelerator Controller

Augmented Reduction Tree

Controller configures
the switches

witch

& Adder Switch

% Lookup
Table
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Woo | Wo1 | Wo2

W10 | W11 0

- Sparse Weight Filter

<Step 1>

Virtual Neuron
Construction

Weights
VN size =5
Activation Units
Outputs
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MAERI Operation Example

Distribution Tree m WO2
: W11 0,
- Sparse Weight Filter
Inputs

- <Step 2>

Weight
Distribution

Accelerator Controller

Weights
Augm;%ed Reduction Tree
Legend " .
Dataflow -egena Activation Units :
2 P |
€ Multiplier Switch Distribution bandwidth is
v
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MAERI Operation Example

Distribution Tree m WO2
- : W11 0,
- Sparse Weight Filter
Inputs
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MAERI Operation Example

Distribution

Xo2 X0 X11

Utilize multicast to reduce
latency and energy
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MAERI Operation Example
AT

Simultaneous Reduction
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MAERI Operation Example
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Outline of Talk
Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna

* Motivation
MAERI: Enabling Flexible Dataflow Mapping over DNN Accelerators via Reconfigurable

* |Irregular Dataflows Interconnects:
i ASPLOS 2018, IEEE Micro Top Picks 2019 Honorable Mention
* DNN Computation

* MAERI | g :m:
e Abstraction

* Implementation

e Operation Example
* Mapping Strategies

Microarchitecture

How to design an
efficient accelerator for
changing DNN models

‘*MAERI
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Example Mapping — Dense CNN

Our Key insight: Each DNN/dataflow translates into neurons of different sizes

Weights/Inputs Weights/Inputs

Output

Inputs Weights
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Example Mapping — Sparse DNN

Our Key insight: Each DNN/dataflow translates into neurons of different sizes

Weights/Inputs Weights/Inputs

Output

Inputs Weights

_ g
Partial Outputs (&3
\: /
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Example Mapping — LSTM/FC

Weights/Inputs Weights/Inputs

o

Output
Inputs Weights utpu

_ 7
Partial Outputs (&

\
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Searching optimal dataflows for MAERI

I To/From DRAM

Find Optimal

) Weight,
Mapping Input,
Output
SRAM * v y + + *

Deep Neural Network

~100% Utilization

Z. Zhao, H. Kwon, S.Kuhar, W. Sheng,

Z. Mao, T. Krishna

Efficient Mapping Space Exploration DataﬂOW Weights/Inputs Weights/Inputs

on a Reconfigurable Neural CO nfigs 8 P

Accelerator | - 1 T e T Nerrane:
SPASS 2019 Virtual Neurons 6

Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna

MAERI: Enabling Flexible Dataflow Mapping over DNN Accelerators via Reconfigurable
i"MAERI
ASPLOS 2018, IEEE Micro Top Picks 2019 Honorable Mention

EMC2 Workshop, ISCA 2019 Tushar Krishna | Georgia Institute of Technology June 23, 2019




Outline of Talk

* Motivation
* |Irregular Dataflows
* DNN Computation

* MAERI

Abstraction
Implementation
Operation Example
Mapping Strategies

e Fvaluations

EMC2 Workshop, ISCA 2019

Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna

MAERI: Enabling Flexible Dataflow Mapping over DNN Accelerators via Reconfigurable
Interconnects:

ASPLOS 2018, IEEE Micro Top Picks 2019 Honorable Mention

=@

Microarchitecture

How to design an
efficient accelerator for
changing DNN models

‘*MAERI
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End-to-End Performance

VGG16 End-to-end Runtime (MAERI vs Eyeriss)
4500
MCONV1 ®CONV2 mCONV3 = CONV4 mCONV5 mCONV6 mCONV7 mCONV8 mCONV9 mCONVIO mCONV11 mCONV12 mCONV13

MAERI (Featuremap parallelism) MAERI (Channel parallelism) MAERI (Adaptive Dataflow) Eyeriss (with array partitioning)
VGG16-Layer

4000

3500 MAERI reduces runtime by 3.3X compared to fixed dataflow

w
o
o
o

2500

Runtime (ms)

O |
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Energy with Convolution Layers

A
% 4 B Systolic Array
c B Row-stationary
u 3 B MAERI (This work)
N2
s
c 1
| -
= 5
0"C1 c2 ©3 ¢c4 €5 C1 C3 C8 C10 Ci2

Alexnet VGG-16

* Normalized to MAERI energy with Alexnet C1

MAERI reduces energy upto 57% and 28% in average compared to Row-Stationary

(dense dataflow) and 7.1% in average compared to Systolic Array (sparse dataflow)
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Summary of MAERI

* DNN models evolving rapidly
* Multiple layer types
* Sparsity Optimizations
* Myriad dataflows for scheduling and mapping

* MAERI enables dynamic grouping of arbitrary number
of MACCs (“Virtual Neuron”) via reconfigurable, non-
blocking interconnects, providing

* Future proof to DNN models and dataflows
* Near 100% compute unit utilization
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Takeaways

Al will be pervasive

GeneSys

Updates

—

HW-SW Co-Design of NE Algorithms
shows promise for continuous
learning at the edge

Environment

Rewards

ng;éﬁiﬁggéd §*MAERI

E(WiXi) gCD)
@)
M+)

DNN Accelerator with Configurable Interconnects
can map Irregular Dataflows

Output

Thank you!

http://synergy.ece.gatech.edu
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