

Efficient Machine Learning Architectures

T. N. Vijaykumar

EMC² Workshop, HPCA, Feb 17 2019

Machine Learning is Exploding

- Breakthrough progress in ML
 - Neural networks more accurate than human experts
 - E.g., Google AlphaGo, IBM Debater
- Great commercial interest
 - Self-driving cars, personal assistants, drug design, investment, medical diagnosis, smart home, OMG!
- Barely scratched the surface
 - Breakthroughs in ML for faster deeper learning

Technology Landscape

- Moore's Law is slowing down
 - Dennard's scaling stopped
 - Thermal limit in handheld devices
- New exciting directions opening
 - 2.5-D/3-D stacking, processing-in-memory
- Efficiencies through domain-specific designs

Architecture's Role

- Match up technology and ML workloads
 - Exploit ML workload characteristics
- Better performance, energy, programmability, reliability, ...
 - At same ML model accuracy
- Improved accuracy or new models
 - OR accuracy-time/energy trade-off
 - Architects alone can't evaluate
 - Requires ML input

Let loose our innovation!

Theme

- Efficiency through
 - fine-grain
 - regularity
 - parallelism
 - reuse

[ImageNet]

Outline

- Introduction
- Workload characteristics
- ML architectures
- Looking forward
- Conclusion

ML Workload Characteristics (1/4)

- Convolutional Neural Networks (CNNs), Long Short-Term Memories (LSTMs), Multi-level Perceptrons (MLPs), Recurrent Neural Networks (RNNs), Reinforcement Learning (RL)
 - Support Vector Machines (SVM), Regression
- Models extract features by applying filters to input
 - Filters trained
- Mostly, matrix-matrix or -vector multiplication
 - Training or inference
- And some "local" operations (e.g., ReLU, pooling)

Fine-grained, regular

An Example CNN Inference

A Fully Connected Layer

[Ando'17]

Fine-grained, regular compute and memory access

ML Workload Characteristics (1/4)

Each layer of network:

- Input x filters (aka weights) = output feature map
- CNNs: matrix x matrix = matrix
- RNNs: vector x matrix = vector

$$(i_1, i_2, i_3, \dots, i_{n-1}, i_n) \times \begin{bmatrix} f_{11}, f_{12}, f_{13}, \dots, f_{1 k-1}, f_{1 k} \\ & \dots \\ f_{n1}, f_{n2}, f_{n3}, \dots, f_{n k-1}, f_{n k} \end{bmatrix}$$

Fine-grained, regular compute and memory

CNN Backpropagation

- Error propagation
 - Convolution with a rotated filter
 - Matrix-matrix multiplication
- Gradient descent
 - Matrix-matrix multiplication and summation

Matrix-matrix multiplications

ML Workload Characteristics (2/4)

- Highly parallel (fine-grain)
- In parallel
 - Apply numerous filters to the input
 - Apply same filter to numerous parts of input
 - CNNs
 - Apply same filters to numerous inputs
 - Batching
- Contrast to Spec or TPC, which pose parallelismscarcity, ML poses parallelism-abundance

Highly parallel

Parallelism in CNNs

ML Workload Characteristics (3/4)

- High reuse
- Apply numerous filters to the input
 - Input reuse
- Apply same filter to numerous parts of input
 - Filter reuse (CNNs)
- Apply same filters to numerous inputs
 - Filter reuse (batching)
- One layer's output is next layer's input
 - Output reuse

High reuse

Reuse in CNNs

High reuse

ML Workload Characteristics (4/4)

- Quantized arithmetic
 - Reduces compute and data
- Low-precision arithmetic for inference
 - Simple quantization for fast arithmetic
 - E.g., int8
- Higher-precision for training
 - E.g., 16-bit FP
 - Post-training quantization
 - Quantization itself is fairly involved

Low precision suffices

Spiky Neural Networks

- Based on spikes and not values
 - Closer to biological brains?
- Neuron activated only upon a spike
 - Energy-efficient
- But accuracy lower than CNNs'
 - Training hard: gradient hard to compute for spikes
- Should model be more accurate before hardware is built?

Outline

- Introduction
- Workload characteristics
- ML architectures
- Looking forward
- Conclusion

ML Architectures

A few examples

- DianNao and successors
- GPGPU, Systolic (IBM, TPU, Trillium), Brainwave FPGA, Wavecomputing Dataflow
- Reuse: Eyeriss, Layer Fusion
- Sparse: Convlutin, EIE, Cambricon, SCNN
- Spiky: True North
- Many more

ML architectures everywhere!

ML Architecture Features (1/4)

- Matrix multiply via multiply-accumulate (MAC) units
- Fine-grained, regular compute and memory access
 - SIMT in GPGPUs
 - Systolic as in IBM, TPU
 - SIMD in Microsoft Brainwave
- Simple logic, low control/instruction overhead
- Energy- and area-efficient

Exploiting fine-grain regularity

ML Architecture Features (2/4)

Numerous MAC units to match high compute

- CNNs compute-bound → more MACs → higher speed
- 128-lane SMs in GPGPUs
- 128x128 = 16K MAC units in a TPU cluster
- 2048-wide SIMD in FPGA
- Challenge is managing immense parallelism

GPGPU

[Nvidia]

TPU

• [Sato'17]

Systolic Matrix Multiplier

Brainwave FPGA

[BrainWave Hotchips '17]

Exploiting Regular Memory Access

- Prefetch next matrix row under current row computation
 - Small prefetch buffers (eg 8 KB)
- GPGPUs' multithreading unnecessary
 - Originally for unpredictable texture cache misses
 - Huge register files (256 KB per SM = 8 MB per die)
 - Area and energy overheads
 - Yet, fundamentally enabled ML's recent success

Regular memory access -> Efficient

ML Architecture Features (3/4)

- Reuse of filters and inputs
 - Reduce memory bandwidth demand
- Hold filters near MAC units
 - Reuse filters across inputs
- Broadcast input to MAC units
 - Reuse input across filters
- More MAC units → more reuse

Exploiting reuse

Reuse in Systolic Array

Exploiting reuse

Concurrent Reuse

- Reuse spread over time → buffering
- Here, concurrent reuse → little buffering
- Systolic pipelines input-filter vector-vector multiply
- V-V multiply is a recurrence → no parallelism
 - Converting accumulation into reduction unnecessary given numerous concurrent vector-vector multiplies
- But pipelining V-V multiply reduces buffering/MAC
 - Eg GPGPU holds 128-B filter/MAC
 - Systolic pipelines 128-B filter across 128 MACs (1 B/MAC)

Reduced buffering

Buffering in Systolic Array

Reduced buffering

Output Reuse

- Reuse of output as next layer input is more involved
 - For convolutional layers
- Current systems write each layer output to memory
 - Unless fits in on-chip cache
- For each output cell, enough to hold dependence parents
 - No need to hold all of previous output
- Going across multiple network layers, enough to hold dependence ancestors [Layer Fusion]

Exploiting output reuse can be efficient

Output Reuse in CNNs

Profile of Dependence Closure

Exploiting output reuse

ML architecture features (4/4)

- Hardware support for int8, 16-bit FP
 - Order of magnitude lower area, energy than 32-bit
 - Simple arithmetic
 - 4-bit, 12-bit?

Low-precision arithmetic

Outline

- Introduction
- Workload characteristics
- ML architectures
- Looking forward
- Conclusion

Looking forward

- 1. ML workload characteristics
 - Sparsity
- 2. New technologies
 - Processing-in/near-memory
- 3. Future ML models

ML Models Are Sparse (1/3)

- Many zeros in both filters and feature maps
 - Both convolutional and fully-connected layers
- Naturally sparse [Cnvltin]
- Recent work enhances sparsity through transformations [NIPS '15, ICLR'16]
 - Pruning by eliminating unimportant connections
 - Maintains accuracy through retraining
 - 25x less compute and 5x less data

Significant sparsity

ML Models Are Sparse

Significant sparsity

Sparse ML Architectures

- One-sided and two-sided sparsity
 - One-sided: exploit zeros only in filters or feature maps [Cnvlutin, EIE, Cambricon]
 - Two-sided: exploit zeros in both [SCNN]
- Sparsity → irregular computation
 Even for same input, different filters → divergent compute
 - SIMD, vector, SIMT, systolic inefficient
- Memory accesses still regular
 - Non-zero values packed sequentially

Irregular compute

Sparse Matrix Multiply

Sparse ML Architectures

- Pointer/offset representation for non-zeros
 - Compressed Sparse Row in High Performance Computing
- Sparse matrix multiply in hardware
 - Parallelism, reuse remain (modulo sparsity)
 - Compute irregular, memory regular
 - One-sided [Cnvlutin, EIE, Cambricon]
 - Two-sided [SCNN] unusual dataflow

Sparsity key for efficiency

New Technologies (2/3)

- Processing in/near memory
 - DRAM, MRAM, STTRAM, ReRAM,
 - Huge memory bandwidth
 - Low energy
- Many ML workloads (eg fully connected layers)
 - Need high memory bandwidth
 - Simple compute
 - Fine-grain parallel
 - Streaming with little reuse
 - Memory-bound

PNM/PIM – ML match made in heaven?

Processing Near Memory

Processing in Memory

• [Mythic Hotchips 30]

Processing in Memory (PIM)

- PIM is not new (70s, 80s, 90s), but three problems
 - CPU-memory process different
 - Die-stacking (PNM) avoids this
 - True PIM → slower logic
 - For 2-input, 1-output operations, compute can be near only one operand
 - Does not work well if > 1 operand large
 - Fundamental
 - Lack of good-fit applications (so far)
- If applications not different, old difficulties will remain

High bandwidth but constraints

PIM implications for ML

- Slow, less compute
 - Process and area constraints
- Limited buffering
 - Area constraints
- Limited connectivity
 - Area/metal layer constraints
- May fit fully-connected ML layers

Future ML Models (3/3)

- ML progressing at breakneck speeds
- Newer, more demanding models
 - Eg Reinforcement learning (RL)
 - Model continually updated and used
 - Computational imaging per-pixel prediction
 - Denoising (Dn) CNNs, Inception Recurrent (IR) CNN
 - Many others
- Multi-modal models
 - Video, speech and language together

Sky is the limit!

A huge thanks to

Mithuna Thottethodi

• SK Hynix

Ashish Gondimalla

Conclusion

- Exciting progress in ML
- Huge opportunity for architects
 - SIMD, SIMT, Systolic, Sparse,
- Exploit ML workload characteristics
 - Parallelism, regularity, reuse
- New technologies may be a good match for ML
 - Processing in/near memory
- We have barely scratched the surface

We can't get enough of this!

Efficient Machine Learning Architectures

T. N. Vijaykumar

EMC² Workshop, HPCA, Feb 17 2019