Efficient Machine
Learning
Architectures

T. N. Vijaykumar
PURDUE

R 00 3 i

EMC? Workshop, HPCA, Feb 17 2019

Machine Learning is Exploding

* Breakthrough progress in ML

* Neural networks more accurate than human experts
e E.g., Google AlphaGo, IBM Debater

e Great commercial interest

e Self-driving cars, personal assistants, drug design,
investment, medical diagnosis, smart home, OMG!

e Barely scratched the surface
e Breakthroughs in ML for faster deeper learning

New “application pull”

Technology Landscape

 Moore’s Law is slowing down
e Dennard’s scaling stopped
e Thermal limit in handheld devices

 New exciting directions opening
e 2.5-D/3-D stacking, processing-in-memory

e Efficiencies through domain-specific designs

New “technology push”

Architecture’s Role

 Match up technology and ML workloads
e Exploit ML workload characteristics

e Better performance, energy, programmability,
reliability, ...
e At same ML model accuracy

e Improved accuracy or new models
e OR accuracy-time/energy trade-off
e Architects alone can’t evaluate
* Requires ML input

Let loose our innovation!

Theme

e Efficiency through
e fine-grain m |
* regularity . | person
e parallelism p =
* reuse

[ImageNet]

Outline

* Introduction

 Workload characteristics
ML architectures

* Looking forward

e Conclusion

ML Workload Characteristics (1/4)

e Convolutional Neural Networks (CNNs), Long Short-
Term Memories (LSTMs), Multi-level Perceptrons
(MLPs), Recurrent Neural Networks (RNNs),
Reinforcement Learning (RL)

e Support Vector Machines (SVM), Regression

 Models extract features by applying filters to input
e Filters trained

e Mostly, matrix-matrix or -vector multiplication
e Training or inference

 And some “local” operations (e.g., ReLU, pooling)

Fine-grained, regular

An Example CNN Inference

Layer 1 1

Weights T

(k.k.3).n

Inputs (3- Layer 1 (n-
channel) channel)

Layer L

A Fully Connected Layer

Individual

—_
=¥
—

Weight

Input
Output

[Ando’17]

Fine-grained, regular compute and memory access

ML Workload Characteristics (1/4)

Each layer of network:

 Input x filters (aka weights) = output feature map
* CNNs: matrix x matrix = matrix

* RNNSs: vector x matrix = vector

(i) 0y ig e v,)X 551 Vel Usigp = = = 1) Pl s I

—=

Fine-grained, regular compute and memory

CNN Backpropagation

e Error propagation
e Convolution with a rotated filter
e Matrix-matrix multiplication

e Gradient descent

e Matrix-matrix multiplication and summation

L

o~ [|8z
w}“’a‘”f

“local gradient”

4

oz AL
Oy 0z

e [CS231n Stanford]

(]
\
2
2\R

02 gradients

Matrix-matrix multiplications

ML Workload Characteristics (2/4)

e Highly parallel (fine-grain)

* In parallel
e Apply numerous filters to the input

e Apply same filter to numerous parts of input
* CNNs

e Apply same filters to numerous inputs
e Batching

e Contrast to Spec or TPC, which pose parallelism-
scarcity, ML poses parallelism-abundance

Highly parallel

Parallelism in CNNs

Layer 1 1 2 n

Weights [[‘

(k.k.3).n

Inputs (3- Layer 1 (n-
channel) channel)

Layer L

Highly parallel

ML Workload Characteristics (3/4)

* High reuse

e Apply numerous filters to the input
* |[nput reuse

* Apply same filter to numerous parts of input
e Filter reuse (CNNs)

e Apply same filters to numerous inputs
e Filter reuse (batching)

* One layer’s output is next layer’s input
e Qutput reuse

Reuse in CNNs

Layer 1 1 2 N

Weights [[‘

(k-k.3).n

Inputs (3- Layer 1 (n-
channel) channel)

Layer L

High reuse

ML Workload Characteristics (4/4)

e Quantized arithmetic
e Reduces compute and data

e Low-precision arithmetic for inference
e Simple quantization for fast arithmetic
e E.g., int8
e Higher-precision for training
e E.g., 16-bit FP
e Post-training quantization
e Quantization itself is fairly involved

Low precision suffices

Spiky Neural Networks

* Based on spikes and not values
e Closer to biological brains?

 Neuron activated only upon a spike
e Energy-efficient

e But accuracy lower than CNNs’
e Training hard: gradient hard to compute for spikes

* Should model be more accurate before hardware is
built?

Outline

* Introduction

 Workload characteristics
ML architectures

* Looking forward

e Conclusion

ML Architectures

A few examples
e DianNao and successors

e GPGPU, Systolic (IBM, TPU, Trillium), Brainwave
FPGA, Wavecomputing Dataflow

* Reuse: Eyeriss, Layer Fusion

e Sparse: Convlutin, EIE, Cambricon, SCNN
e Spiky: True North

* Many more

ML architectures everywhere!

ML Architecture Features (1/4)

e Matrix multiply via multiply-accumulate (MAC) units

* Fine-grained, regular compute and memory access
* SIMT in GPGPUs
e Systolicasin IBM, TPU
e SIMD in Microsoft Brainwave

e Simple logic, low control/instruction overhead
e Energy- and area-efficient

Exploiting fine-grain regularity

ML Architecture Features (2/4)

Numerous MAC units to match high compute
e CNNs compute-bound = more MACs = higher speed

e 128-lane SMs in GPGPUs
e 128x128 = 16K MAC units in a TPU cluster
e 2048-wide SIMD in FPGA

e Challenge is managing immense parallelism

Exploiting fine-grain parallelism

GPGPU

[Nvidia]

Fermi Streaming Multiprocessor (SM)

Exploiting fine-grain parallelism

TPU

e [Sato’17]

Exploiting fine-grain parallelism

[] r. [] []
Systolic Matrix Multiplier
[Zhang’ 18] : Weight Memory
- @13 Aq9 MAC | M:f:. MAC .
2_‘ } Wi .| * 008 —P Wai — MAC Unlt =
g -y v 1 Activations, ¢ * 1 a"S ‘ .
L = 21 MAC MAC
= ¥ Wiz =w25 teft T waz
c w
e, : £ 3 ¢
'Ei' . .,3,.‘ ~ .
o . 8 .
E ! ' \ '
MAC | MAC MAC
thN | wan Tt T W
il
2
g
g Y11 Y21 Yn1
S5 | Viz Yzz YNz
Q| : .
& Y1B YzgB YnB

Exploiting fine-grain parallelism

Brainwave FPGA

[BrainWave Hotchips 17]

BV Eerned

e

Predusct Unlt

Product Unit

Tensor

Instructicn
Decoder

]

Mulﬁfuncﬁun

NOC

S
)
[
©
—
q0)
O
<
(O
—
n_ub
Q
-
G—
o] ¢
C
=
I
O
X
L

Exploiting Regular Memory Access

e Regular memory = amenable to simple prefetch

e Prefetch next matrix row under current row
computation

e Small prefetch buffers (eg 8 KB)

e GPGPUs’ multithreading unnecessary
e Originally for unpredictable texture cache misses
e Huge register files (256 KB per SM = 8 MB per die)
e Area and energy overheads
* Yet, fundamentally enabled ML’s recent success

Regular memory access > Efficient

ML Architecture Features (3/4)

* Reuse of filters and inputs
e Reduce memory bandwidth demand

e Hold filters near MAC units
e Reuse filters across inputs

e Broadcast input to MAC units
e Reuse input across filters

e More MAC units =2 more reuse

Exploiting reuse

Reuse in Systolic Array

¢ Weight Memor
[Zhang’'18] g y
; v v
-+ @13 A14] MAC MA MAC '
2‘ } Wi1 v Waq s WNI .___."' — MAC Unlt =
'
g ¢ v Activations ¢ . 4 a ".8 4 R
@ | 1 ®[mac| [wmac MAC
E ." w']_z 3 wzz L B B —b WNZ
=
= : S IO
©) . 3| & .
= b . n "?: .
8 ! y l
MAC || MAC . MAC
i wlN o WZN e = WNN
il
o
e
£
g Y11 Y21 Yn1
S | Y12 Y22 Y2
8 - . .
<< (V1B Y2B YnNB

Exploiting reuse

Concurrent Reuse

e Reuse spread over time = buffering
* Here, concurrent reuse =2 little buffering
 Systolic pipelines input-filter vector-vector multiply

e V-V multiply is a recurrence = no parallelism

e Converting accumulation into reduction unnecessary
given numerous concurrent vector-vector multiplies

e But pipelining V-V multiply reduces buffering/MAC
e Eg GPGPU holds 128-B filter/MAC
e Systolic pipelines 128-B filter across 128 MACs (1 B/MAC)

Reduced buffering

Butfering in Systolic Array

’ Weight Memor
[Zhang’'18] :)
; h 4 h
.. @12 A11/ MAC MA MAC :
2_‘ } W11 - W21 s 0 8 —P WNI — MAC Unlt
(@) , . r é 24
= ¢ 1 Activations ¢ 5 a 8
— ‘ — + >
@ | 1 ®[mac| [wmac MAC
= ¥ Wiz | Waz [*°°° Wiz
=
S L :
& . 32
> . 4y .
5 | ! |
MAC || MAC) MAC
i Win | Wan TRt T waw
dd
o
-
1)
g Y11 Y21 Yn1
S5 | Viz Yzz YNz
O . . .
& Y1B YzgB YnB

Reduced buffering

Output Reuse

e Reuse of output as next layer input is more involved
e For convolutional layers

e Current systems write each layer output to memory
e Unless fits in on-chip cache

e For each output cell, enough to hold dependence
parents
 No need to hold all of previous output

e Going across multiple network layers, enough to
hold dependence ancestors [Layer Fusion]

Exploiting output reuse can be efficient

Output Reuse In CNNs

Profile of Dependence Closure

Exploiting output reuse

ML architecture features (4/4)

 Hardware support for int8, 16-bit FP
e Order of magnitude lower area, energy than 32-bit

e Simple arithmetic
e 4-bit, 12-bit?

Low-precision arithmetic

Outline

* Introduction

 Workload characteristics
ML architectures

e Looking forward

e Conclusion

Looking forward

1. ML workload characteristics
e Sparsity

2. New technologies
e Processing-in/near-memory

3. Future ML models

ML Models Are Sparse (1/3)

 Many zeros in both filters and feature maps
e Both convolutional and fully-connected layers

e Naturally sparse [Cnvltin]

 Recent work enhances sparsity through
transformations [NIPS ’15, ICLR’16]
e Pruning by eliminating unimportant connections
 Maintains accuracy through retraining
e 25x less compute and 5x less data

Significant sparsity

ML Models Are Sparse

' W Density (1A) 1
W Density (W —
0.8 VW) 08 &
2 A Work (# of multiplies) =
2
0.6 0.6 3
i £
M
£ 04 04 =
E -
0.2 !! 02 =2
’ 0

g ¥ 2 8 %) g ,

s 8 7' S5 73 E

o L U - 5 5

o o " o 5 5

= = P L 0

[a g} u = X

’ inception_3a inception_5b
[Parashar’17]

(b) Googl.eNet

Significant sparsity

Sparse ML Architectures

* One-sided and two-sided sparsity

* One-sided: exploit zeros only in filters or feature maps
[Cnvlutin, EIE, Cambricon]

e Two-sided: exploit zeros in both [SCNN]

e Sparsity = irregular computation
Even for same input, different filters 2 divergent compute
e SIMD, vector, SIMT, systolic inefficient

 Memory accesses still regular
 Non-zero values packed sequentially

Irregular compute

Sparse Matrix Multiply

Implicit Index (not stored)

4—“
10203
1 0 1 22

2 0 2 6
3 77 3 0
4 0 4 0
.5852
6 0 6 0
7 0 7 9
2 8 0
Vector A Vector B

Explicit Indices (stored)

Vector A (CSR) Vector B (CSR)

AT x B =12x3 + 8x2 = 52

Sparse ML Architectures

e Pointer/offset representation for non-zeros
e Compressed Sparse Row in High Performance Computing

e Sparse matrix multiply in hardware
e Parallelism, reuse remain (modulo sparsity)
e Compute irregular, memory regular
e One-sided [Cnvlutin, EIE, Cambricon]
e Two-sided [SCNN] — unusual dataflow

Sparsity key for efficiency

New Technologies (2/3)

e Processing in/near memory
e DRAM, MRAM, STTRAM, ReRAM,
e Huge memory bandwidth
* Low energy

 Many ML workloads (eg fully connected layers)
 Need high memory bandwidth
e Simple compute
e Fine-grain parallel
e Streaming with little reuse
e Memory-bound

PNM/PIM — ML match made in heaven?

Processing Near Memory

Main memory bus

3D-DRAM die
3D-DRAM die
3D-DRAM die
3D-DRAM die

Base Die

Processing in Memory

e [Mythic

C Slngle Tlle Co:::cszted
HOtChIpS 30] in a Grid
____________ >
. 3 Weight ?g)
npu © -~
D:lta é Storage DO Activations
o + =
il Analog Matrix]
a Multiplier 2
SRAM RISC-V
SIMD Router
Network

Connections

Processing in Memory (PIM)

* PIM is not new (70s, 80s, 90s), but three problems

e CPU-memory process different
e Die-stacking (PNM) avoids this
* True PIM = slower logic
e For 2-input, 1-output operations, compute can be
near only one operand
e Does not work well if > 1 operand large
e Fundamental

e Lack of good-fit applications (so far)
e If applications not different, old difficulties will remain

High bandwidth but constraints

PIM implications for ML

 Slow, less compute
* Process and area constraints

e Limited buffering
e Area constraints

e Limited connectivity
e Area/metal layer constraints

 May fit fully-connected ML layers

Future ML Models (3/3)

* ML progressing at breakneck speeds

* Newer, more demanding models

e Eg Reinforcement learning (RL)
 Model continually updated and used

e Computational imaging per-pixel prediction
e Denoising (Dn) CNNs, Inception Recurrent (IR) CNN

 Many others

 Multi-modal models
* Video, speech and language together

Sky is the limit!

A huge thanks to

Mithuna Thottethodi

. Ashish Gondimalla
e SK Hynix

Conclusion

e Exciting progress in ML

 Huge opportunity for architects
e SIMD, SIMT, Systolic, Sparse,

e Exploit ML workload characteristics
e Parallelism, regularity, reuse

 New technologies may be a good match for ML
e Processing in/near memory

* We have barely scratched the surface

We can’t get enough of this!

Efficient Machine
Learning
Architectures

T. N. Vijaykumar

EMC? Workshop, HPCA, Feb 17 2019

