Scalable and Energy-Efficient Architecture Lab (SEAL)

NNBench-X: A Benchmarking Methodology
for Neural Network Accelerator Designs

Xinfenq Xie, Xing Hu, Peng Gu, Shuangchen Li, Yu Ji, and Yuan Xie

University of California, Santa Barbara
02/17/2019

UC Santa Barbara b, UC SANTA BARBARA
Scalable Energy-efficient en g i nee ri n g

Architecture Lab

= 8

Outline

« Background & Motivation
NN Benchmark for Accelerator: Why, What?

« Benchmark Method

NN Workload Characterization
» Case Study: TensorFlow Model Zoo

« SW-HW Co-design Evaluation

« Case Study: Neurocube, DianNao, and Cambricon-X
* Conclusion & Future Work

NN Benchmark: Why?

* NN accelerator has attracted a lot of attention
» How good are existing accelerators?
* How to design a better one?

TPU-v1

Systolic Array GPU-Volta

Sea of Small Cores
eeeeeeeeee

Volta Architecture
e -

A benchmark-suite for evaluating and providing guidelines to

accelerators with diverse and representative workloads.
. e~ e o)

DeePhi
Sparse MXU

3

NN Benchmark: What?

* 3Vs in NN models
* Volume: a large amount of NN models
» Velocity: a fast speed of volume growth
» Variety: various NN architectures

500

Filter
375 concatenation
RN | 1x1 convolutions | | 3x3 convolut | | 5x5 ions | 3x3 max pooling

A benchmark-suite needs to select representative NN models
and update the suite.

=] === ZUlZ ZU1o ZUl4 ZUIlO £ZU IO

odels

the building block of GoogleNet

4

NN Benchmark: What?

« SW-HW co-design: model compression + hardware design
* Pruning: prune out insignificant weight
» Quantization: use lower number of bits for data representation

SpMat
+ Ptr_Even- Anthm Ptr_Odd

Pruned model EIE

\ INTS INTS INTS
Original model I

INT8 INT8

Quantized model

NN Benchmark: What?

« SW-HW co-design: model compression + hardware design
* Pruning: prune out insignificant weight
* Quantization: use Iower number of~b([s for data

How can | include
one of them to
R j evaluate SW-HW
/ co-designs?

,' s Pruned-mogiel

A benchmark-suite needs to cover SW HW co-designs for NN
accelerators

‘Y W %"’\!j"
Quantlzed modeI/ - T

_— gy

NN Benchmark: Related Work

 We need a new NN benchmark for accelerators!

Project

+

Fathom CPU/GPU Training
Inference
BenchlP Accelerator Inference
: Training +

+

MLPerf } _Elciui _I_/I_o_l?ll_e_ _ Inference
‘ MNBench X Accelerator Inference

_—
" o .
==
e I

Empirical
Empirical

Empirical

-—
—
—
.——
—————————__

Benchmark Method
* Overall idea: both SW and HW designs are input

Application Application Feature
Candidate Pool Extraction + S.|m|Iar|ty Application Set
Analysis

Model
Compression
ethod

C—lardware Hardware Evaluation PPA Results
Designs

Benchmark-suite Benchmark-
Generation suite

VAV,

NN Workload Characterization

 Application feature for NN applications
» Two-level analysis: operator-level and application-level

(Appl)

Operator cluster 1 Operator cluster 2

Application feature:

Time breakdown on different operator clusters

Operator Feature

» Operator features
 Locality: #data / #comps
 Parallelism: the ratio of #comps can be parallelized

H#data:

sizeof(A) + sizeof(B) + sizeof(C) AT T T T T T T]

Hcomps: +

length(A) scalar add oprs s [[[[T T T T 1
Locality: #data / #comps cC T T T T T T T 1

Parallelism: 100% An example of element-wise add

10

Case Study: TensorFlow Model Zoo

» Up-to-date models from the machine learning community
* Source code: https://github.com/tensorflow/models

« A wide range of application domains:
« Computer vision (CV), natural language processing (NLP), informatics etc.
» 24 NN applications with 57 models.

* Diverse neural network architectures and learning methods:
» Convolutional neural network (CNN), recurrent neural network (RNN) etc.
« Supervised learning, unsupervised learning, reinforcement learning etc.

11

Locality

25

20 A

154

10 -

Workload Characterization (1/5)

e MatMul
. Conv
v Pooling
1 Reduce
+ Element-wise
Others

+* +

Parallelism

* Observation #1: Convolution
and matrix multiplication
operators are similar to each
other in terms of locality and
parallelism features.

* Observation #2: Operators with
the same functionality can exhibit
very different locality and
parallelism features.

12

25 A

20 1

154

Locality

10 -

A

» Cluster 1: Inferior parallelism
» Hard to be parallelized.
* Bad news from Amdahl’s Law.

» Cluster 2: Moderate parallelism
and locality
» Benefit from parallelization and
cache hierarchy.

* Cluster 3: Ample parallelism

® Clusterl
v Cluster 2
+ Cluster 3

2

Application feature f = (R4, R,, R3), where Ry, R,, and R; are

time spent in operators from three clusters respectively.

0.2

\._/;\.a—/] ~—

0.6 0.8 1.0

Parallelism 13

NLP
CV + NLP

Information and Coding
Others

0.0 0.2 0.4 0.6 0.8 1.0
R

* Observation #3: The bottleneck
of application is related to its
application domain.

» CV applications are bounded by
R, (mostly Conv and MatMul).

* NLP applications are bounded by
R; (mostly Element-wise)

14

Workload Characterization (4/5)

1.0 1

0.8

0.6 +

R3

0.4 1

0.2

0.0 -

*+HDr o

v
NLP
CV + NLP

Information and Coding

Others

o * T+
o8
. Ty
® o »

° % h‘
0.0 0.2 0.4 0.6 0.8 1.0

Rz

(a) CPU

R3

1.0

0.8 A

0.6

0.4 1

0.2 1

0.0 1

LN

e Cv
~ A NLP
o. * o W CV+NLP
O + Information and Coding
*"‘;. % Others
* *’Q.
% L]
=3
<5
® [
O ® ®
@
*
0.'0 0:2 0.I4 0?6 0.'8 l.'O
Rz
(b) GPU

» Observation #4: Applications on GPU have a larger R, because

parallelizable parts are well accelerated. (Amdahl’s Law)

15

Workload Characterization (5/5)

1.0 - . . .
@ © TF Model Zoo » Select applications along the line
Y textsum Y Selected Applications R2 + R3 =1
0.8 - ' skip_thoughts
** pcl_rl
- Table: Brief descriptions for ten applications in
8.6 entropy_coder NNBench-X.
9 _ mgbﬂenet Application Description
nE" @ Jjnception_resnet_v2 textsum Text summarization
-y ® _image_decoder skip_thoughts Sentence-to-vector encoder
' , pcl_rl Reinforcement learning
® 09 _gfcn_resnet101 entropy_coder Image file compression

Welcome to check our recent published paper for more details:

X. Xie, X. Hu, P. Gu, S. Li, Y. Ji and Y. Xie, "NNBench-X: Benchmarking and Understanding Neural

Network Workloads for Accelerator Designs," in IEEE Computer Architecture Letters.

0.0 0.2 0.4 0.6 0.8 1.0
Rz 16

Benchmark Method

* After the first stage, we obtained the application set.

Application Application Feature
Candidate Pool Extraction + S.|m|Iar|ty Application Set
Analysis

Model
Compression
ethod

C—lardware Hardware Evaluation PPA Results
Designs

Benchmark-suite Benchmark-
Generation suite

AVAV.

Benchmark-suite Generation

« Export a new computation graph according to the input model
compression technique

An example: exporting a pruned model

18

Hardware Evaluation

* Operator-based simulation framework

Accelerator

« Scheduling strategy: Hardware PPA models
» Schedule operators to accelerator

» Fallback: (unsupported by the accelerator) schedule into the host

19

SW-HW Co-design Evaluation

e Evaluated Hardware:
« GPU, Neurocube, DianNao, and Cambricon-X

« Case Study I: Memory-centric vs. Compute-centric Designs
» Evaluated hardware: GPU and Neurocube

» Case Study Il: Benefits of Model Compression
« Solution |: DianNao + Dense models
 Solution Il: Cambricon-X + Sparse models (90% sparsity)
 Solution lIl: Cambricon-X + Sparse models (95% sparsity)

20

Compute-centric vs. Memory-centric

10000 10000 » Observation #5: GPU benefits
applications bounded by R,
because of rich on-chip
computation resources and
scratchpad memory.

LSEP P &I PP P & o & & D D D .
w e TS = - Observation #6: Neurocube
R M b) benefits applications bounded by
) N v« R; by providing large effective
(a) GPU (b) Neurocube memory bandwidth.

Applications are listed in an increasing R, order
along the x-axis. (decreasing R, order)

21

Benefits of Model Compression

10000 . .
i ®m Cambricon-X (90%) m Cambricon-X (95%) ¢ Observatlon #7' Prur"ng

Speedup

100 |

DianNao

1000 weights helps CV and NLP

applications differently.

r —_—— T I

10I : :
1 : : * Pruning weights help CV
- l. P applications significantly.

0.1

¢ é‘ 443’/

* NLP applications are not so
sensitive to weight sparsity as

DianNao: 0% weight sparsity CV applications.

Cambricon-X (90%): 90% weight sparsity

Cambricon-X (95%): 95% weight sparsity

22

Conclusion & Future Work

* Two Main Takeaways:

« CV and NLP applications are very different from the perspective of NN
accelerator designs.

« Conv and MatMul are not always the bottleneck of NN applications.

e Future Work:

» Hardware modeling in the early design stage of accelerators.

» Other model compression techniques in addition to quantization and
pruning.

» Value-dependent behaviors in NN applications, such as graphical
convolution network (GCN).

23

Thank You!

Q&A

Please contact the authors for
further discussion.

E-mail:
xinfeng@ucsb.edu
yvuanxie@ucsb.edu

24

