



# NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs

Xinfeng Xie, Xing Hu, Peng Gu, Shuangchen Li, Yu Ji, and Yuan Xie University of California, Santa Barbara 02/17/2019







### Outline

- Background & Motivation
  - NN Benchmark for Accelerator: Why, What?
- Benchmark Method
- NN Workload Characterization
  - Case Study: TensorFlow Model Zoo
- SW-HW Co-design Evaluation
  - Case Study: Neurocube, DianNao, and Cambricon-X
- Conclusion & Future Work





## **NN Benchmark: Why?**

- NN accelerator has attracted a lot of attention
  - How good are existing accelerators?
  - How to design a better one?



A benchmark-suite for <u>evaluating</u> and <u>providing guidelines</u> to

accelerators with diverse and representative workloads.





### **NN Benchmark: What?**

- 3Vs in NN models
  - Volume: a large amount of NN models
  - Velocity: a fast speed of volume growth
  - Variety: various NN architectures





# A benchmark-suite needs to <u>select</u> representative NN models

### and **<u>update</u>** the suite.

----

2012 2013 2014 2015 2016

the building block of GoogleNet

Δ



### **NN Benchmark: What?**

- SW-HW co-design: model compression + hardware design
  - Pruning: prune out insignificant weight
  - Quantization: use lower number of bits for data representation







## **NN Benchmark: What?**

- SW-HW co-design: model compression + hardware design
  - Pruning: prune out insignificant weight
  - Quantization: use lower number of bits for data rep

How can I include one of them to evaluate SW-HW co-designs?

A benchmark-suite needs to cover SW-HW co-designs for NN

Quantized model

Pruned model



6





### **NN Benchmark: Related Work**

• We need a new NN benchmark for accelerators!

| Project<br>Name | Platform       | Phase                                        | App Selection | SW-HW Co-design |
|-----------------|----------------|----------------------------------------------|---------------|-----------------|
| Fathom          | CPU/GPU        | Training +<br>Inference                      | Empirical     | ×               |
| BenchIP         | Accelerator    | Inference                                    | Empirical     | ×               |
| MLPerf          | Cloud + Mobile | Training +<br>- – <del>- Inference</del> – - | Empirical     | ×               |
| NNBench-X       | Accelerator    | Inference                                    | Quantitative  |                 |
| 7               |                |                                              |               |                 |



### **Benchmark Method**

### • Overall idea: both SW and HW designs are input







### **NN Workload Characterization**

- Application feature for NN applications
  - Two-level analysis: operator-level and application-level





### **Operator Feature**

### Operator features

- Locality: #data / #comps
- Parallelism: the ratio of #comps can be parallelized

#### #data:

sizeof(A) + sizeof(B) + sizeof(C)
#comps:

length(A) scalar add oprs

### Locality: #data / #comps Parallelism: 100%







### Up-to-date models from the machine learning community

Source code: <a href="https://github.com/tensorflow/models">https://github.com/tensorflow/models</a>

#### A wide range of application domains:

- Computer vision (CV), natural language processing (NLP), informatics etc.
- 24 NN applications with 57 models.

#### Diverse neural network architectures and learning methods:

- Convolutional neural network (CNN), recurrent neural network (RNN) etc.
- Supervised learning, unsupervised learning, reinforcement learning etc.





### **Workload Characterization (1/5)**



- Observation #1: Convolution and matrix multiplication operators are similar to each other in terms of locality and parallelism features.
- <u>Observation #2:</u> Operators with the same functionality can exhibit very different locality and parallelism features.



## Workload Characterization (2/5)







### **Workload Characterization (3/5)**



- <u>Observation #3:</u> The bottleneck of application is related to its application domain.
- CV applications are bounded by R<sub>2</sub> (mostly Conv and MatMul).
- NLP applications are bounded by R<sub>3</sub> (mostly Element-wise)





### **Workload Characterization (4/5)**



 Observation #4: Applications on GPU have a larger R<sub>1</sub> because parallelizable parts are well accelerated. (Amdahl's Law)





### **Workload Characterization (5/5)**



 Select applications along the line R<sub>2</sub> + R<sub>3</sub> = 1

Table: Brief descriptions for ten applications in NNBench-X.

| Application   | Description                |  |  |
|---------------|----------------------------|--|--|
| textsum       | Text summarization         |  |  |
| skip_thoughts | Sentence-to-vector encoder |  |  |
| pcl_rl        | Reinforcement learning     |  |  |
| entropy_coder | Image file compression     |  |  |

Welcome to check our recent published paper for more details:

X. Xie, X. Hu, P. Gu, S. Li, Y. Ji and Y. Xie, "NNBench-X: Benchmarking and Understanding Neural Network Workloads for Accelerator Designs," in *IEEE Computer Architecture Letters*.



### **Benchmark Method**

### • After the first stage, we obtained the application set.







### **Benchmark-suite Generation**

• Export a new computation graph according to the input model compression technique





### **Hardware Evaluation**

Operator-based simulation framework



Scheduling strategy:

Hardware PPA models

- Schedule operators to accelerator
- Fallback: (unsupported by the accelerator) schedule into the host





### **SW-HW Co-design Evaluation**

- Evaluated Hardware:
  - GPU, Neurocube, DianNao, and Cambricon-X
- Case Study I: Memory-centric vs. Compute-centric Designs
  - Evaluated hardware: GPU and Neurocube
- Case Study II: Benefits of Model Compression
  - Solution I: DianNao + Dense models
  - Solution II: Cambricon-X + Sparse models (90% sparsity)
  - Solution III: Cambricon-X + Sparse models (95% sparsity)



# **Compute-centric vs. Memory-centric**



• <u>Observation #5:</u> GPU benefits applications bounded by R<sub>2</sub> because of rich on-chip computation resources and scratchpad memory.

• <u>Observation #6:</u> Neurocube benefits applications bounded by R<sub>3</sub> by providing large effective memory bandwidth.

Applications are listed in an increasing  $R_2$  order along the x-axis. (decreasing  $R_3$  order)





### **Benefits of Model Compression**



DianNao: 0% weight sparsity Cambricon-X (90%): 90% weight sparsity Cambricon-X (95%): 95% weight sparsity

- <u>Observation #7:</u> Pruning weights helps CV and NLP applications differently.
- Pruning weights help CV applications significantly.
- NLP applications are not so sensitive to weight sparsity as CV applications.





## **Conclusion & Future Work**

- Two Main Takeaways:
  - CV and NLP applications are very different from the perspective of NN accelerator designs.
  - Conv and MatMul are not always the bottleneck of NN applications.
- Future Work:
  - Hardware modeling in the early design stage of accelerators.
  - Other model compression techniques in addition to quantization and pruning.
  - Value-dependent behaviors in NN applications, such as graphical convolution network (GCN).





## **Thank You!**



Please contact the authors for further discussion.

E-mail: <u>xinfeng@ucsb.edu</u> <u>yuanxie@ucsb.edu</u>