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Background

Approximate Training Data
Computing Curation / Labeling

Semi-Supervised

This paper
DL training Pap
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Motivation (Computation Efficiency)

Approximate Computing

1 ) 3 We use alternative version of functions (a or b)
(1) (2) (3) .
without loss of program performance.

(a) Lightweight (b) Alternative
[ version of function “neural” version

Basic Premise
o Can we leverage new deep learning accelerators by structurally
approximate functional modules in software programs?
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Motivation (Software Maintenance)

Software Lifecycle*

o Software modules are developed through a
combination of engineering and expertise (e.g.
parameter tuning, compute optimization, etc.).

o Revisiting the pipeline to make changes or
improvements requires thorough
understanding by domain experts or
developers.

o Systematic upkeep of code can be costly,
especially if the system is old and engineering
knowledge has been lost.

* Source: https://www.indiamart.com/adhrittechnologies/software-maintenance-services.html
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Example Processing Pipeline
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Achieves ~50% accuracy ~80% accuracy
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Generating Training Data for Approximation

We use generated test set to train
the approximate neural network.

Generated RGB
Test Set

L
3

img1l
Img2 cat
Learned Feature
Extractor BOES Le

32X32 RGB
(Test Set)
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4 ,
SVM 1/10 label Ila/bleOI
(Test Set) Approx.
PIPELINE-2 Version
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DNN Computation Examples

Image Classification
1.4e9

1.2e9 Example of high
1.0e9 DNN overhead in
approximation using

Large Multiply Accumulate
(MACC) and Memory to support
fast DNN computation

o 0.8e9 too large a DNN.
(@) ix Multi ni
o 0.6e9 (25%2?56%:22?*@0)
(96Kx256x8b =_24 MiB) 24%
0.4e9 S0
0.2e9 E |n:;rfw (4m2§$g;umm13)sx E
1.0e6 p::rt _l Acuvahon Plpellnes*%] - p:g
Pipeline (feature learning + approximate algorithm i pc|e - (e
SVM) (DenseNet-40) T interace s | Z: -
Google TPU for DNN
Image Denoising 40Watt (28nm 700MHz)
90e9
Example of low DNN Insights:
70e9 overhead in 1. We can train Approximate DNNs, but we must
approximation using also select an appropriately sized DNN.
& 50e9 right sized DNN
g g ' 2. Approximate DNNs make processor operation
30e9 more uniform (e.g. mostly MACCs) and thus

hardware can be more efficient.
(reference: 80x vs CPU, 30x vs GPU)

o 1

pipeline (Conditional Random approximate algorithm
Field) (convolutional autoencoder
with skip connection)
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Noisy Labels Examples

http://cs.brown.edu/courses/cs143/2011/results/proj4/hangsu/

Generated labels can be noisy due to:
1. Low accuracy of conventional pipeline.

2. Operational settings that alter the
performance of the function.

http://cs.brown.edu/courses/cs143/2011/results/proj4/hangsu/

3. Coding errors.
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Example Evaluation Benchmarks

: ° ™ i
Pipeline (MNIST)  78.8% 78.9% g . L -

Approximate 780% 782% Groundtruth Gaussian noise added Conventional CRF Auto-encoder

ssim with CRF data
mogeenoisvg T

Average SSIM Train Test

Image Denoising

image Denoising | L LI

Average SSIM Train Test

Pipeline BSD300  53.9% 56.3%
Approximate 56.4% 59.4%

We are able to train an Approximate DNN that performs
equally well on ground truth dataset vs. user-coded pipeline.
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Example Evaluation Benchmarks

Image Classification

airplane autarnobibe
Classification, _ "“\
Average Detection Train
Pipeline CIFAR10 95% 86%
Approximate 95% 90%

Approximate DNN can generalize and outperform user-coded pipeline.
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Performance Characterization

Image Classification Image Denoising
95 ' ' ' | ' S
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< — ~ Skip-NN-T0 °
< 85 [| Target Pipeline X P Target Pipeline
(@)
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g o 0.551 \
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2 80 \ ) Increasing
. Increasing efficiency.
| | LeNet efficiency. | 051
& Input image quality
70 | | | | | | 0.45 L L 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 o 1 2 3 4 S5 6 7 8 9

FLOPs (x1019)
FLOPs (x108)

Approximation results on two benchmarks, showing achievable performance vs.
computational complexity. We can select the appropriate DNN based on target
power efficiency.
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Training Data Characterization — Image Denoising
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Training Data Characterization — Image Classification
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Summary

= Our result addresses ML with less manually curated labels.

= Helps future development of complex image processing and
computer vision systems.

= Older deep networks (LeNet / AlexNet of yesteryear) are still
useful to generate labels.

Looking ahead
= Generalization to other application domains

= Improve training convergence by characterizing the noise as
outliers (removed from training set)

= Explore other uses, e.g. dynamic runtime selection based on
performance/accuracy needs.
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