Bootstrapping Deep Neural Networks from Approximate Image Processing Pipelines

Kilho Son, Jesse Hostetler, Sek Chai

February 17, 2019. EMC2 Workshop

© 2019 SRI International. All Rights Reserved. Confidential

SRI's Mission: World-changing solutions to make people safer, healthier, and more productive.

The team

Kilho Son

Jesse Hostetler

Acknowledgments

Special thanks to our research sponsor.

Background

Motivation (Computation Efficiency)

Basic Premise

Can we leverage new deep learning accelerators by structurally approximate functional modules in software programs?

Motivation (Software Maintenance)

- Software modules are developed through a combination of engineering and expertise (e.g. parameter tuning, compute optimization, etc.).
- Revisiting the pipeline to make changes or improvements requires thorough understanding by domain experts or developers.
- Systematic upkeep of code can be costly, especially if the system is old and engineering knowledge has been lost.

* Source: https://www.indiamart.com/adhrittechnologies/software-maintenance-services.html

Example Processing Pipeline

Generating Training Data for Approximation

DNN Computation Examples

Image Classification

Google TPU for DNN 40Watt (28nm 700MHz)

Insights:

- 1. We can train Approximate DNNs, but we must also select an appropriately sized DNN.
- Approximate DNNs make processor operation more uniform (e.g. mostly MACCs) and thus hardware can be more efficient. (reference: 80x vs CPU, 30x vs GPU)

Noisy Labels Examples

http://cs.brown.edu/courses/cs143/2011/results/proj4/hangsu/

http://cs.brown.edu/courses/cs143/2011/results/proj4/hangsu/

Generated labels can be noisy due to:

- 1. Low accuracy of conventional pipeline.
- 2. Operational settings that alter the performance of the function.
- 3. Coding errors.

Example Evaluation Benchmarks

Image Denoising

Image Denoising	Evaluation	
Average SSIM	Train	Test
Pipeline (MNIST)	78.8%	78.9%
Approximate	78.0%	78.2%
	Fval	uation
Image Denoising Average SSIM	Train	Test
Pipeline BSD300	53.9%	56.3%
Approximate	56.4%	59.4%

We are able to train an Approximate DNN that performs equally well on ground truth dataset vs. user-coded pipeline.

Example Evaluation Benchmarks

Image Classification

			airplane	automobile	bird	cat	der
Image Classification, Average Detection	Evaluation			-			
	Train	Test	dog	frog	horse	ship	truc
Pipeline CIFAR10	95%	86%	ani	2.5			-
Approximate	95%	90%	100	(A.S.)		the state	

Approximate DNN can generalize and outperform user-coded pipeline.

Performance Characterization

Approximation results on two benchmarks, showing achievable performance vs. computational complexity. We can select the appropriate DNN based on target power efficiency.

Training Data Characterization – Image Denoising

Takeaway -

 We can train NN with significantly less manual labeling of data -- e.g. use the conventional pipeline (green) to generate labels to train Approx NN (red).

Training Data Characterization – Image Classification

Summary

- Our result addresses ML with less manually curated labels.
- Helps future development of complex image processing and computer vision systems.
- Older deep networks (LeNet / AlexNet of yesteryear) are still useful to generate labels.

Looking ahead

- Generalization to other application domains
- Improve training convergence by characterizing the noise as outliers (removed from training set)
- Explore other uses, e.g. dynamic runtime selection based on performance/accuracy needs.