Efficient Winograd or Cook-Toom Convolution Kernel Implementation on Widely Used Mobile CPUs

Partha Maji, Andrew Mundy, Ganesh Dasika, Jesse Beu, Matthew Mattina, Robert Mullins

Arm Research, University of Cambridge

ML and the Rise of the Edge

VR/AR/MR

Robotics

Home, surveillance & analytics

Drones

Shipping & logistics

ΙοΤ

Automotive

Mobile

arm

2 © 2019 Arm Limited

Contributions of this work

- We discuss what Winograd convolution can offer in terms of performance
- Breakdown the instruction-level implications and memory layout tradeoffs for different flavors of a Winograd kernel in order to realize its full potential
- Demonstrate how general matrix multiply (GEMM) can further optimize Winograd
- Present performance results for Winograd vs conventional im2row + GEMM solution
 - More than a 2x performance boost on real hardware today!

Ultimately enable more efficient ML compute at the edge through Winograd in the Arm Compute Library (ArmCL).

Convolution and Winograd arm

+ + + + + + + + + + + + + + +

What is Winograd and why should I care?

- Convolutional Neural Networks (CNNs)
 - Common type of deep learning model employed in a variety of domains
 - Convolve filter bank (weights) over a field (input activations) to produce a response (output)
 - Push response through an activation function (typically ReLu) and feed to the next layer
- Winograd Convolution
 - Based in the Chinese Remainder Theorem and modulo arithmetic
 - Produces mathematically equivalent results to naïve convolution*
 - Similar to using Fourier: transform into 'Winograd domain', do simpler math, transform result back

*Assuming infinite precision

What is Winograd and why should I care?

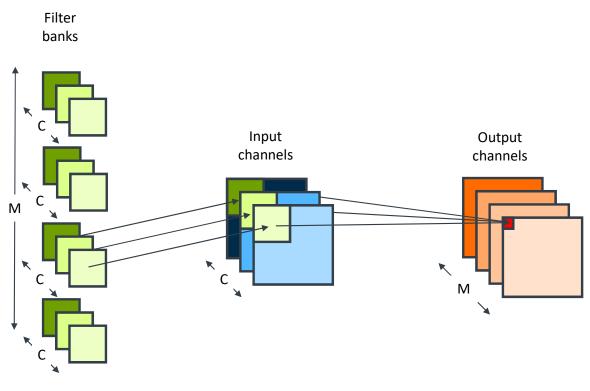
- Convolutional Neural Networks (CNNs)
 - Common type of deep learning model employed in a variety of domains
 - Convolve filter bank (weights) over a field (input activations) to produce a response (output)
 - Push response through an activation function (typically ReLu) and feed to the next layer
- Winograd Convolution
 - Based in the Chinese Remainder Theorem and modulo arithmetic
 - Produces mathematically equivalent results to naïve convolution*
 - Similar to using Fourier: transform into 'Winograd domain', do simpler math, transform result back

Objective: To (quickly) explain for a CPU context:

$$f = Z^{T} \left[\left(W W W^{T} \right) \odot \left(X^{T} x X \right) \right] Z$$

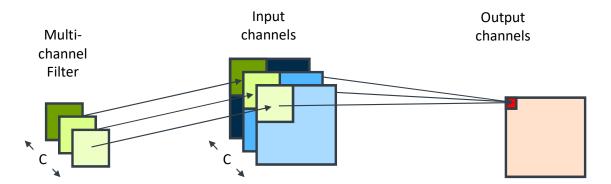
*Assuming infinite precision

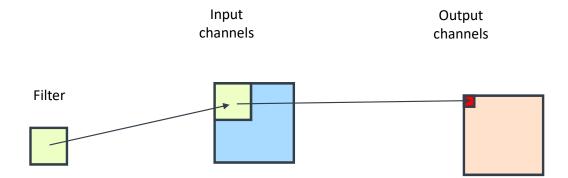
6 © 2019 Arm Limited



Standard CNN Configuration

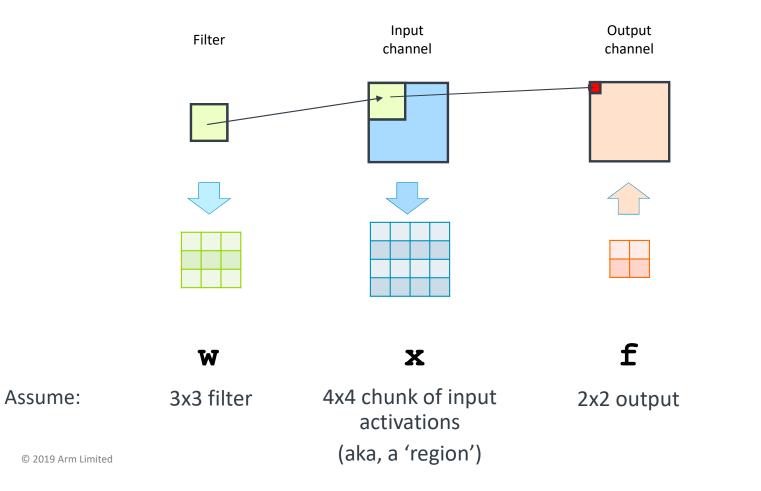
7 © 2019 Arm Limited



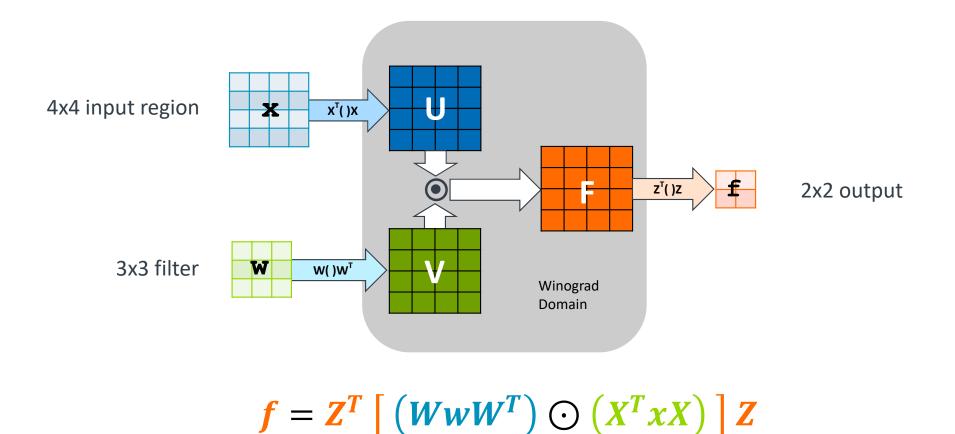


9 © 2019 Arm Limited

arm



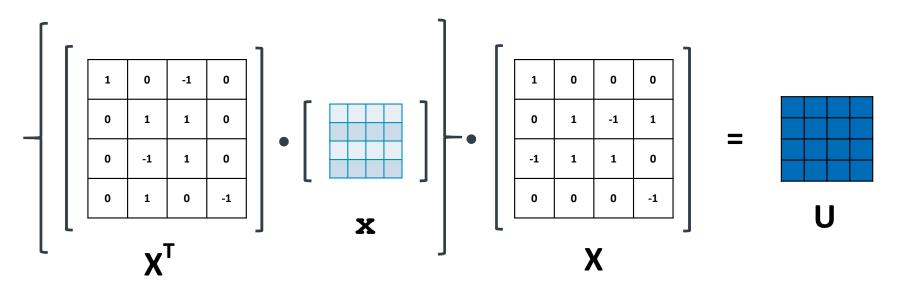
10



11 © 2019 Arm Limited

Input Region Transform

 $(2 \times 2) = (2 \times 4) \left[(4 \times 3)(3 \times 3)(3 \times 4) \odot (4 \times 4)(4 \times 4)(4 \times 4) \right] (2 \times 4)$

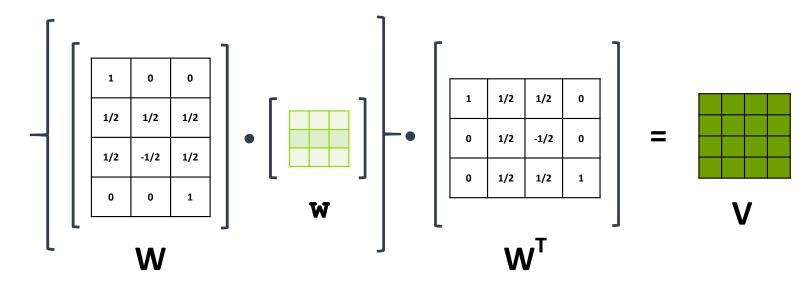


 $f = Z^{T} \left[\left(W W W^{T} \right) \odot \left(X^{T} x X \right) \right] Z$

12 © 2019 Arm Limited

Filter Transform

 $(2 \times 2) = (2 \times 4) [(4 \times 3)(3 \times 3)(3 \times 4)] \odot (4 \times 4)(4 \times 4)(4 \times 4)](2 \times 4)$

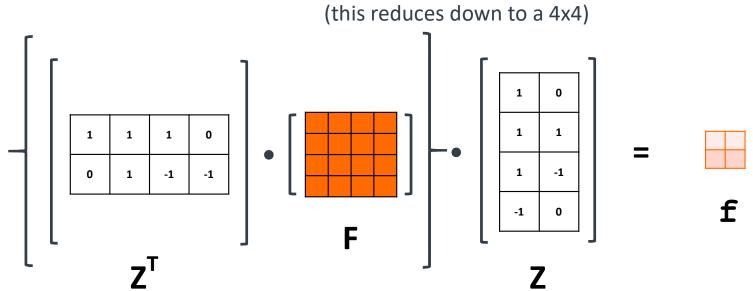


 $f = Z^{T} \left[\left(W W W^{T} \right) \odot \left(X^{T} x X \right) \right] Z$

13 © 2019 Arm Limited

Output Channel Transform

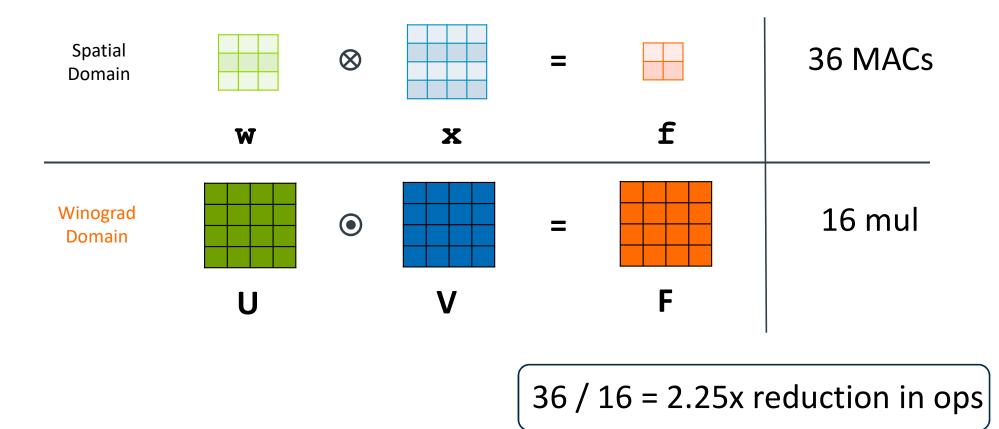
 $(2 \times 2) = (2 \times 4) \left[(4 \times 3)(3 \times 3)(3 \times 4) \odot (4 \times 4)(4 \times 4)(4 \times 4) \right] (4 \times 2)$



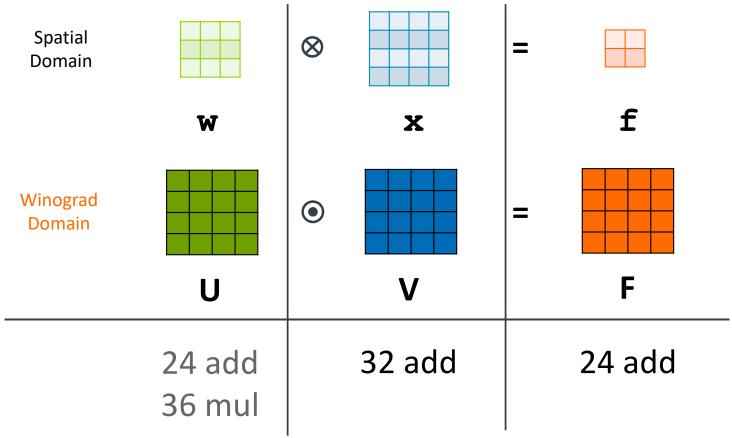
 $\boldsymbol{f} = \boldsymbol{Z}^{T} \left[\left(\boldsymbol{W} \boldsymbol{W} \boldsymbol{W}^{T} \right) \odot \left(\boldsymbol{X}^{T} \boldsymbol{x} \boldsymbol{X} \right) \right] \boldsymbol{Z}$

14 © 2019 Arm Limited

Elementwise Multiplication

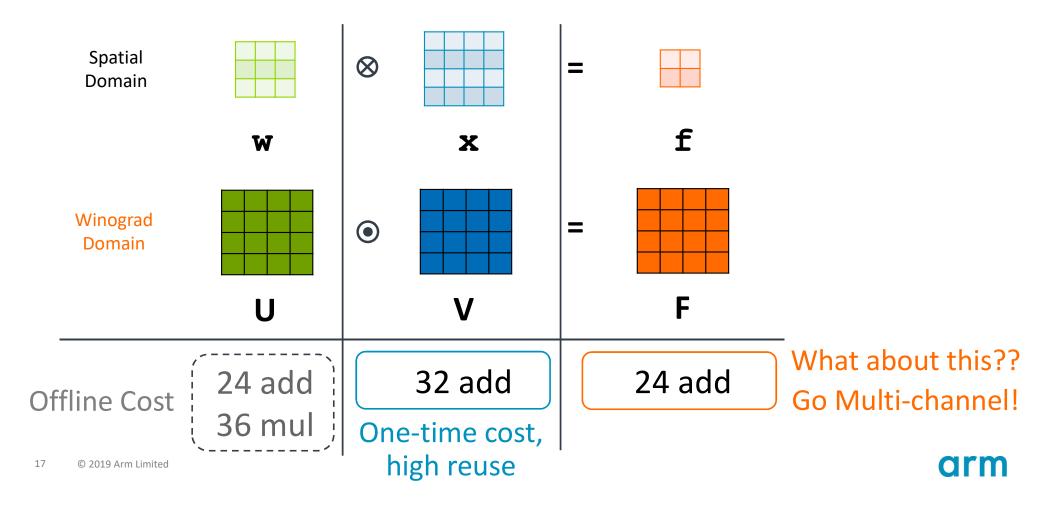


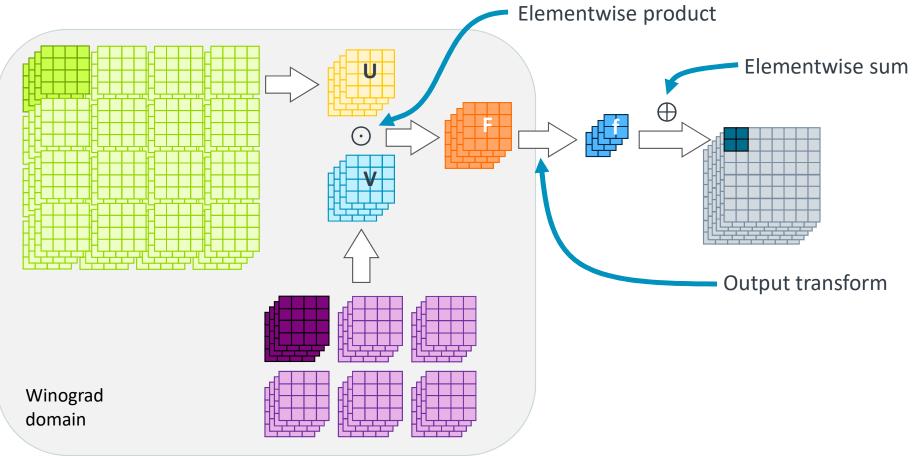
Transform Cost



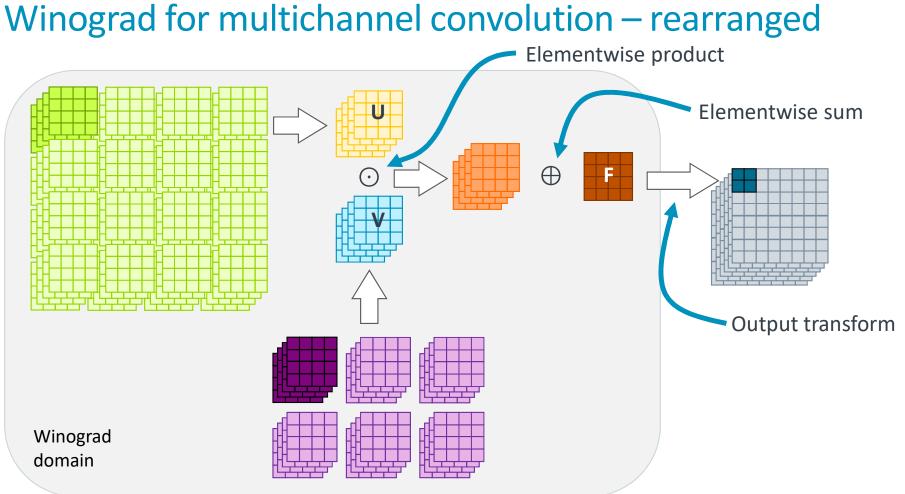
16 © 2019 Arm Limited

Transform Cost





18 © 2019 Arm Limited



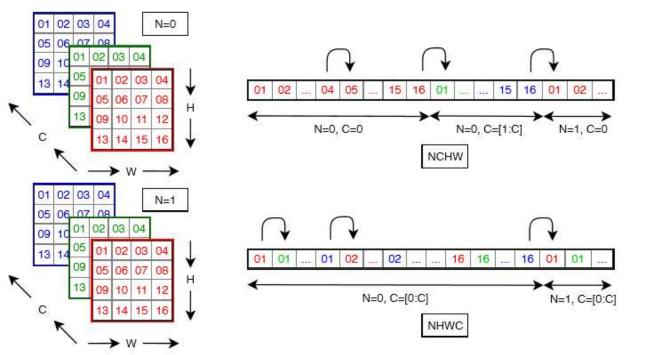
© 2019 Arm Limited 19

Multi-Channel Filters, Memory Layout, Vectorization, and GEMM

NCHW vs NHWC, data layout

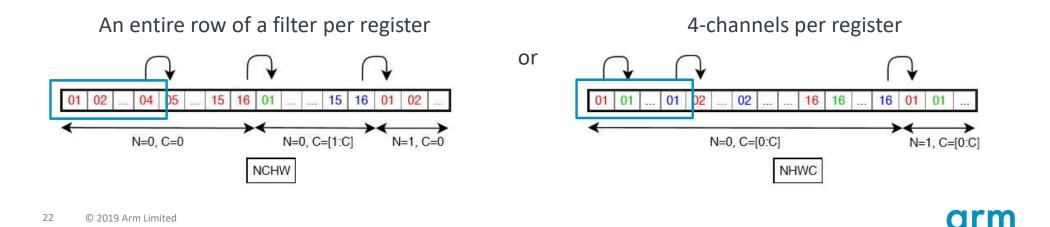
Tensor Ordering

- N = batch
- C = channel
- H = height
- W = width



NCHW vs NHWC, data layout

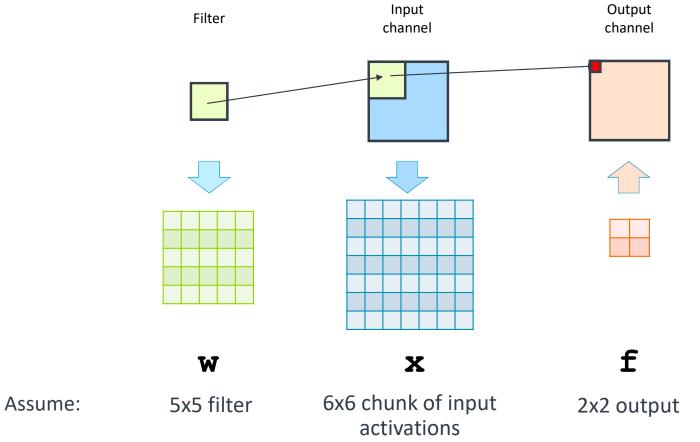
- Layout ultimately dictates how contiguous vector-load operations will populate registers
 - Under NCHW, registers will be filled entirely from a single channel
 - Under NHWC, registers will hold multiple channels for a single coordinate
- In the Arm-V8 architecture (with 128-bit SIMD registers), this means either:



Advantages to NHWC layout for CPUs

- Reasonably optimized transforms exist for both NCHW and NHWC at F(2x2, 3x3, 4x4)
- Convolution filters and Winograd are not restricted to F(2x2, 3x3, 4x4)
 - Larger regions yields can drive higher performance e.g., F(3x3, 3x3, 5x5)
 - 5x5 and 7x7 filters found in inception networks e.g., F(2x2, 5x5, 6x6)
 - Dimension-to-register capacity mismatch results in wasted register utilization and/or alignment complexity under NCHW
 - NHWC only experiences increased register pressure

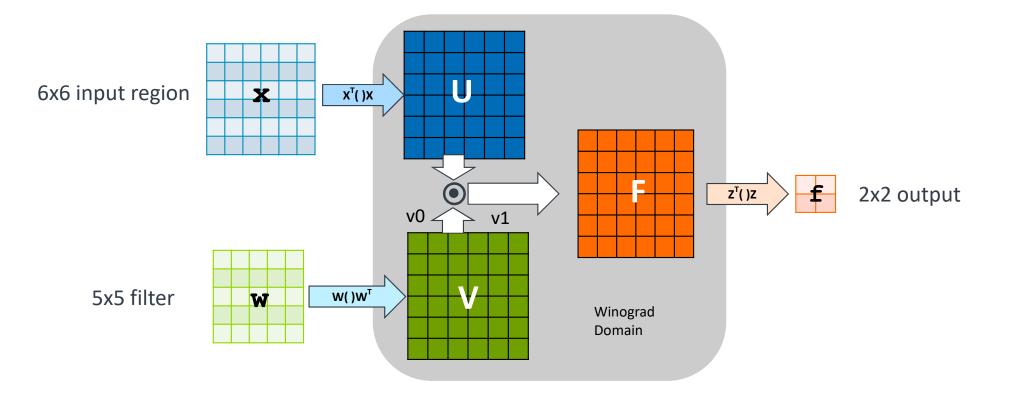
F(2x2, 5x5, 6x6) Example



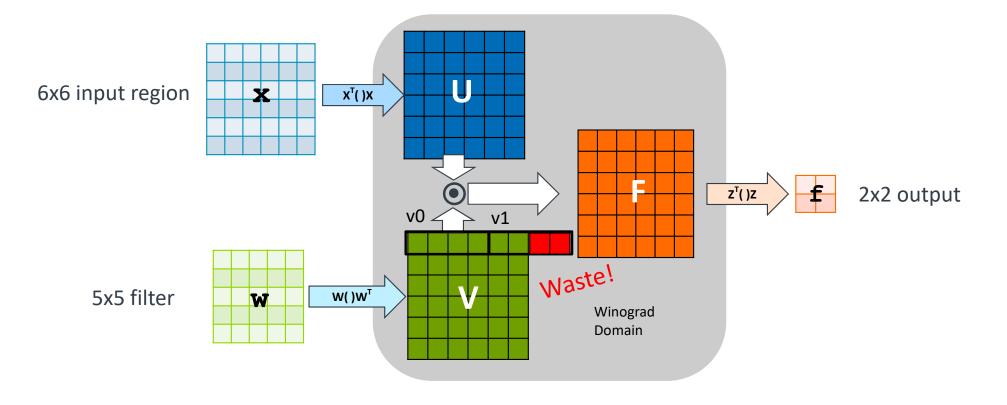
arm

24 © 2019 Arm Limited

F(2x2, 5x5, 6x6) Example



F(2x2, 5x5, 6x6) Example



26 © 2019 Arm Limited

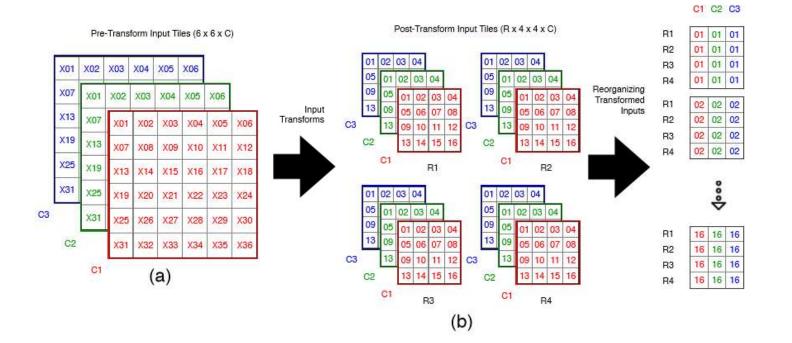
Advantages to NHWC layout for CPUs

- Reasonably optimized transforms exist for both NCHW and NHWC at F(2x2, 3x3, 4x4)
- Convolution filters and Winograd are not restricted to F(2x2, 3x3, 4x4)
 - Larger regions yields can drive higher performance e.g., F(4x4, 3x3, 6x6)
 - 5x5 and 7x7 filters found in inception networks e.g., F(2x2, 5x5, 7x7)
 - Dimension-to-register capacity mismatch results in wasted register utilization and alignment complexity under NCHW
 - NHWC only experiences increased register pressure
- Wider registers or lower precision also adds challenges for NCHW
 - 256-bit or FP16 means 8 values per register, or 2 rows per register under NCHW
 - Loss of 1:1 register-row mapping complicates assembly sequence for efficient NCHW transpose
 - NHWC simply doubles the # of channels stored per register

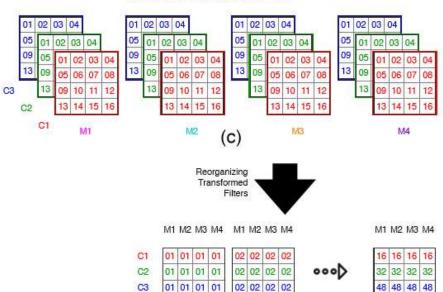
Vectorization over channels is more portable and performant!

Use of GEMM to further optimize

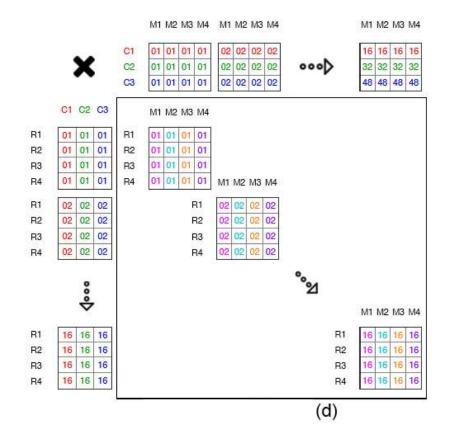
- General Matrix-Matrix Multiply is a common, highly optimized operation for most architectures, including Arm
- Inspection of the full Winograd convolution algorithm (Listing 1 in paper) shows:
 - The fundamental operation is a multiply-accumulate
 - There are 2 axis of data re-use:
 - weight tile reuse over all input regions and
 - input region reuse over all output channels
 - Opportunity to leverage GEMM to do the computation in a highly parallel manner



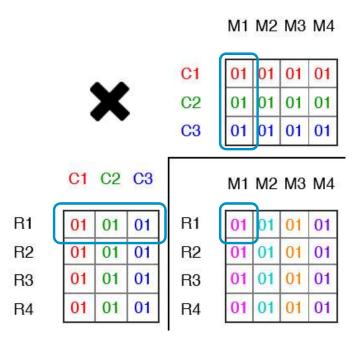
29 © 2019 Arm Limited



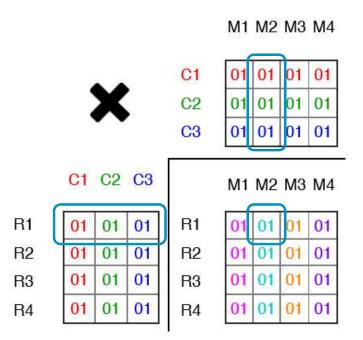
Post-Transform Filter Tiles (C x 4 x 4 x M)

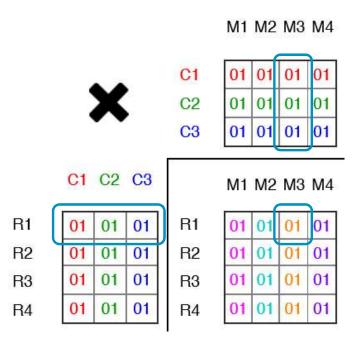


31 © 2019 Arm Limited

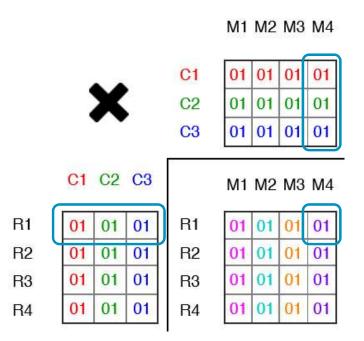


32 © 2019 Arm Limited

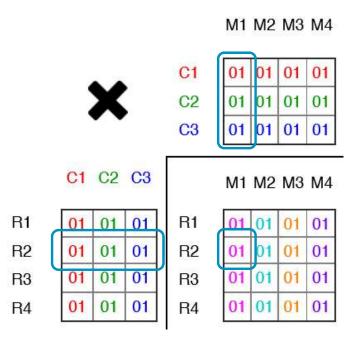




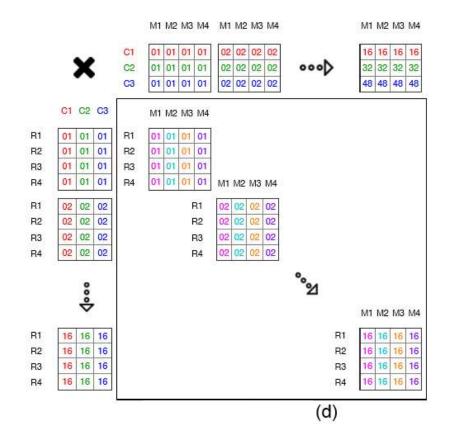
34 © 2019 Arm Limited



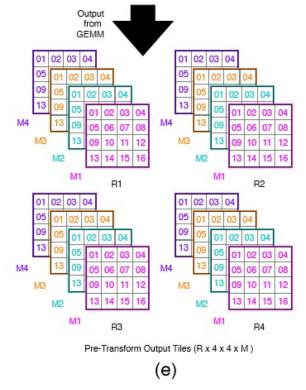
35 © 2019 Arm Limited



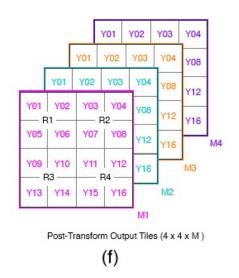
36 © 2019 Arm Limited



37 © 2019 Arm Limited



Output Transforms



38 © 2019 Arm Limited

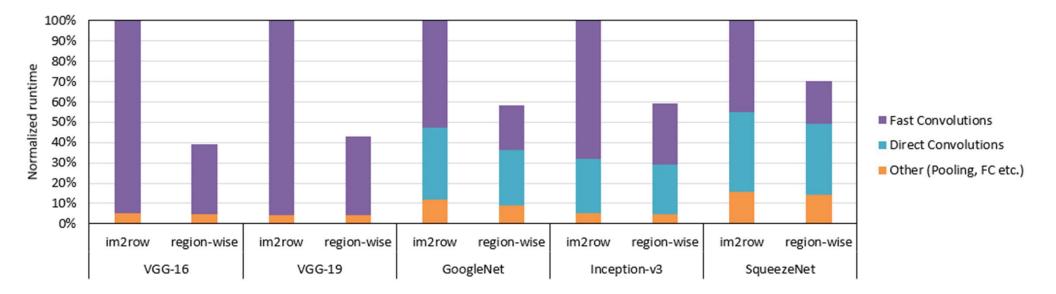
| | r'n | \mathbf{n}^{\dagger} | | | | | Results | | | |
|--|-----|------------------------|--|--|--|--|---------|--|--|--|
| | | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | | | | |

Experimental Setup

Platform: Huawei HiKey960 Development Platform – 4xA73 cluster Networks: VGG19, VGG16, GoogleNet, Inception-v3, SqueezeNet Other: FP32, batchsize 1, 4x multi-threaded through Arm Compute Library (ArmCL)

Measured individual per-layer performance as well as end-to-end run-time, compared with highly optimized conventional 'im2row GEMM' convolution strategy

Benchmark Results



Conclusion

- ML is coming to the edge, hard and fast
- ARM CPUs are already widely deployed at the edge, so optimizing for performance here has immediate impact
- Winograd domain is an alternative to conventional im2row/GEMM convolution that reduces math, but requires care to fully realize benefit
- When done properly, can provide as much as a 2.5x speedup on real hardware for endto-end model inference

Benefits now available in ArmCL!

| [†] Thank You | | | | | rr | C | |
|------------------------|--|--|--|--|-----------|---|--|
| _ Danke | | | | | + | | |
| Merci | | | | | | | |
| + + 谢谢 | | | | | | | |
| ありがとう | | | | | | | |
| [*] Gracias | | | | | | | |
| . Kiitos | | | | | | | |
| 감사합니다 | | | | | | | |
| धन्यवाद | | | | | | | |
| شکرًا | | | | | | | |
| תודה | | | | | | | |
| | | | | | | | |

arm ⁺The Arm trademarks featured in this presentation are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners. www.arm.com/company/policies/trademarks

.

.