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ML and the Rise of the Edge

 Robotics

 Home, surveillance & 
analytics

 VR/AR/MR

 IoT

 Shipping & logistics

 Mobile

 Drones

 Automotive
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Contributions of this work
• We discuss what Winograd convolution can offer in terms of performance
• Breakdown the instruction-level implications and memory layout tradeoffs for different 

flavors of a Winograd kernel in order to realize its full potential
• Demonstrate how general matrix multiply (GEMM) can further optimize Winograd
• Present performance results for Winograd vs conventional im2row + GEMM solution

• More than a 2x performance boost on real hardware today! 

Ultimately enable more efficient ML compute at the edge through 
Winograd in the Arm Compute Library (ArmCL).



Convolution and 
Winograd 
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What is Winograd and why should I care?

• Convolutional Neural Networks (CNNs)
• Common type of deep learning model employed in a variety of domains
• Convolve filter bank (weights) over a field (input activations) to produce a response (output)
• Push response through an activation function (typically ReLu) and feed to the next layer

• Winograd Convolution
• Based in the Chinese Remainder Theorem and modulo arithmetic
• Produces mathematically equivalent results to naïve convolution*
• Similar to using Fourier: transform into ‘Winograd domain’, do simpler math, transform result back

*Assuming infinite precision
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Winograd Convolution

C

C

C

C

C

M

M

Input 
channels

Output
channels

Filter
banks

Standard CNN Configuration



8 © 2019 Arm Limited 

Winograd Convolution

CC

Input 
channels

Output
channelsMulti-

channel 
Filter



9 © 2019 Arm Limited 

Winograd Convolution

Input 
channels

Output
channels

Filter



10 © 2019 Arm Limited 

Winograd Convolution
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Winograd Convolution
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Input Region Transform
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Filter Transform
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Output Channel Transform
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Elementwise Multiplication
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Transform Cost
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Transform Cost
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Winograd for multichannel convolution
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Winograd
domain

Winograd for multichannel convolution – rearranged
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Multi-Channel Filters, 
Memory Layout, 

Vectorization, and 
GEMM
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NCHW vs NHWC, data layout

Tensor Ordering
• N = batch
• C = channel
• H = height
• W = width
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NCHW vs NHWC, data layout

• Layout ultimately dictates how contiguous vector-load operations will populate 
registers

• Under NCHW, registers will be filled entirely from a single channel
• Under NHWC, registers will hold multiple channels for a single coordinate

• In the Arm-V8 architecture (with 128-bit SIMD registers), this means either:

An entire row of a filter per register 4-channels per register
or
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Advantages to NHWC layout for CPUs

• Reasonably optimized transforms exist for both NCHW and NHWC at F(2x2, 3x3, 4x4)
• Convolution filters and Winograd are not restricted to F(2x2, 3x3, 4x4)

• Larger regions yields can drive higher performance – e.g., F(3x3, 3x3, 5x5)
• 5x5 and 7x7 filters found in inception networks – e.g., F(2x2, 5x5, 6x6)
• Dimension-to-register capacity mismatch results in wasted register utilization and/or alignment 

complexity under NCHW
• NHWC only experiences increased register pressure
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F(2x2, 5x5, 6x6) Example
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Advantages to NHWC layout for CPUs

• Reasonably optimized transforms exist for both NCHW and NHWC at F(2x2, 3x3, 4x4)
• Convolution filters and Winograd are not restricted to F(2x2, 3x3, 4x4)

• Larger regions yields can drive higher performance – e.g., F(4x4, 3x3, 6x6)
• 5x5 and 7x7 filters found in inception networks – e.g., F(2x2, 5x5, 7x7)
• Dimension-to-register capacity mismatch results in wasted register utilization and alignment 

complexity under NCHW
• NHWC only experiences increased register pressure

• Wider registers or lower precision also adds challenges for NCHW
• 256-bit or FP16 means 8 values per register, or 2 rows per register under NCHW
• Loss of 1:1 register-row mapping complicates assembly sequence for efficient NCHW transpose
• NHWC simply doubles the # of channels stored per register

Vectorization over channels is more portable and performant!
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Use of GEMM to further optimize

• General Matrix-Matrix Multiply is a common, highly optimized operation for most 
architectures, including Arm

• Inspection of the full Winograd convolution algorithm (Listing 1 in paper) shows:
• The fundamental operation is a multiply-accumulate
• There are 2 axis of data re-use: 

• weight tile reuse over all input regions and 
• input region reuse over all output channels 

• Opportunity to leverage GEMM to do the computation in a highly parallel manner



29 © 2019 Arm Limited 

Winograd execution using Matrix of GEMMs
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Winograd execution using Matrix of GEMMs
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Winograd execution using Matrix of GEMMs
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Zoom on individual GEMM
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Zoom on individual GEMM
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Zoom on individual GEMM
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Zoom on individual GEMM
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Zoom on individual GEMM
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Winograd execution using Matrix of GEMMs



38 © 2019 Arm Limited 

Winograd execution using Matrix of GEMMs



Results
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Experimental Setup

Platform: Huawei HiKey960 Development Platform – 4xA73 cluster
Networks: VGG19, VGG16, GoogleNet, Inception-v3, SqueezeNet
Other: FP32, batchsize 1, 4x multi-threaded through Arm Compute Library (ArmCL)

Measured individual per-layer performance as well as end-to-end run-time, compared 
with highly optimized conventional ‘im2row GEMM’ convolution strategy
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Benchmark Results
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Conclusion

• ML is coming to the edge, hard and fast
• ARM CPUs are already widely deployed at the edge, so optimizing for performance 

here has immediate impact
• Winograd domain is an alternative to conventional im2row/GEMM convolution that 

reduces math, but requires care to fully realize benefit
• When done properly, can provide as much as a 2.5x speedup on real hardware for end-

to-end model inference

Benefits now available in ArmCL!
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