
Partha Maji, Andrew Mundy, Ganesh Dasika,
Jesse Beu, Matthew Mattina, Robert Mullins

Arm Research, University of Cambridge

Efficient Winograd or Cook-Toom
Convolution Kernel Implementation

on Widely Used Mobile CPUs

2 © 2019 Arm Limited

ML and the Rise of the Edge

 Robotics

 Home, surveillance &
analytics

 VR/AR/MR

 IoT

 Shipping & logistics

 Mobile

 Drones

 Automotive

3 © 2019 Arm Limited

Contributions of this work
• We discuss what Winograd convolution can offer in terms of performance
• Breakdown the instruction-level implications and memory layout tradeoffs for different

flavors of a Winograd kernel in order to realize its full potential
• Demonstrate how general matrix multiply (GEMM) can further optimize Winograd
• Present performance results for Winograd vs conventional im2row + GEMM solution

• More than a 2x performance boost on real hardware today!

Ultimately enable more efficient ML compute at the edge through
Winograd in the Arm Compute Library (ArmCL).

Convolution and
Winograd

5 © 2019 Arm Limited

What is Winograd and why should I care?

• Convolutional Neural Networks (CNNs)
• Common type of deep learning model employed in a variety of domains
• Convolve filter bank (weights) over a field (input activations) to produce a response (output)
• Push response through an activation function (typically ReLu) and feed to the next layer

• Winograd Convolution
• Based in the Chinese Remainder Theorem and modulo arithmetic
• Produces mathematically equivalent results to naïve convolution*
• Similar to using Fourier: transform into ‘Winograd domain’, do simpler math, transform result back

*Assuming infinite precision

6 © 2019 Arm Limited

What is Winograd and why should I care?

• Convolutional Neural Networks (CNNs)
• Common type of deep learning model employed in a variety of domains
• Convolve filter bank (weights) over a field (input activations) to produce a response (output)
• Push response through an activation function (typically ReLu) and feed to the next layer

• Winograd Convolution
• Based in the Chinese Remainder Theorem and modulo arithmetic
• Produces mathematically equivalent results to naïve convolution*
• Similar to using Fourier: transform into ‘Winograd domain’, do simpler math, transform result back

*Assuming infinite precision

7 © 2019 Arm Limited

Winograd Convolution

C

C

C

C

C

M

M

Input
channels

Output
channels

Filter
banks

Standard CNN Configuration

8 © 2019 Arm Limited

Winograd Convolution

CC

Input
channels

Output
channelsMulti-

channel
Filter

9 © 2019 Arm Limited

Winograd Convolution

Input
channels

Output
channels

Filter

10 © 2019 Arm Limited

Winograd Convolution

Input
channel

Output
channel

Filter

w x f
3x3 filter 4x4 chunk of input

activations
(aka, a ‘region’)

2x2 outputAssume:

11 © 2019 Arm Limited

Winograd Convolution

XT()X

W()WT

ZT()Z

Winograd
Domain

F

U

V

x

w

f

3x3 filter

4x4 input region

2x2 output

12 © 2019 Arm Limited

Input Region Transform

x

1 0 -1 0

0 1 1 0

0 -1 1 0

0 1 0 -1

XT X

=

U

1 0 0 0

0 1 -1 1

-1 1 1 0

0 0 0 -1

13 © 2019 Arm Limited

Filter Transform

w

1 0 0

1/2 1/2 1/2

1/2 -1/2 1/2

0 0 1

1 1/2 1/2 0

0 1/2 -1/2 0

0 1/2 1/2 1

W WT

=

V

14 © 2019 Arm Limited

Output Channel Transform

F

1 1 1 0

0 1 -1 -1

ZT Z

=

f

1 0

1 1

1 -1

-1 0

(this reduces down to a 4x4)

15 © 2019 Arm Limited

Elementwise Multiplication

w x f

U V F

=

= 36 MACs

16 mul

Spatial
Domain

Winograd
Domain

36 / 16 = 2.25x reduction in ops

16 © 2019 Arm Limited

Transform Cost

w x f

U V F

=

=

24 add
36 mul

Spatial
Domain

Winograd
Domain

32 add 24 add

17 © 2019 Arm Limited

Transform Cost

w x f

U V F

=

=

32 add 24 add24 add
36 mul

Spatial
Domain

Winograd
Domain

What about this??
Go Multi-channel!Offline Cost

One-time cost,
high reuse

18 © 2019 Arm Limited

Winograd for multichannel convolution

Winograd
domain

U

V

Elementwise sum

Elementwise product

Output transform

F f

19 © 2019 Arm Limited

Winograd
domain

Winograd for multichannel convolution – rearranged

U

V

Elementwise sum

Elementwise product

F

Output transform

Multi-Channel Filters,
Memory Layout,

Vectorization, and
GEMM

21 © 2019 Arm Limited

NCHW vs NHWC, data layout

Tensor Ordering
• N = batch
• C = channel
• H = height
• W = width

22 © 2019 Arm Limited

NCHW vs NHWC, data layout

• Layout ultimately dictates how contiguous vector-load operations will populate
registers

• Under NCHW, registers will be filled entirely from a single channel
• Under NHWC, registers will hold multiple channels for a single coordinate

• In the Arm-V8 architecture (with 128-bit SIMD registers), this means either:

An entire row of a filter per register 4-channels per register
or

23 © 2019 Arm Limited

Advantages to NHWC layout for CPUs

• Reasonably optimized transforms exist for both NCHW and NHWC at F(2x2, 3x3, 4x4)
• Convolution filters and Winograd are not restricted to F(2x2, 3x3, 4x4)

• Larger regions yields can drive higher performance – e.g., F(3x3, 3x3, 5x5)
• 5x5 and 7x7 filters found in inception networks – e.g., F(2x2, 5x5, 6x6)
• Dimension-to-register capacity mismatch results in wasted register utilization and/or alignment

complexity under NCHW
• NHWC only experiences increased register pressure

24 © 2019 Arm Limited

F(2x2, 5x5, 6x6) Example
Input

channel
Output
channel

Filter

w x f
5x5 filter 6x6 chunk of input

activations
2x2 outputAssume:

25 © 2019 Arm Limited

XT()X

W()WT

ZT()Z

Winograd
Domain

F

U

V

x

w

f

5x5 filter

6x6 input region

2x2 output

F(2x2, 5x5, 6x6) Example

v0 v1

26 © 2019 Arm Limited

XT()X

W()WT

ZT()Z

Winograd
Domain

F

U

V

x

w

f

5x5 filter

6x6 input region

2x2 output

F(2x2, 5x5, 6x6) Example

v0 v1

27 © 2019 Arm Limited

Advantages to NHWC layout for CPUs

• Reasonably optimized transforms exist for both NCHW and NHWC at F(2x2, 3x3, 4x4)
• Convolution filters and Winograd are not restricted to F(2x2, 3x3, 4x4)

• Larger regions yields can drive higher performance – e.g., F(4x4, 3x3, 6x6)
• 5x5 and 7x7 filters found in inception networks – e.g., F(2x2, 5x5, 7x7)
• Dimension-to-register capacity mismatch results in wasted register utilization and alignment

complexity under NCHW
• NHWC only experiences increased register pressure

• Wider registers or lower precision also adds challenges for NCHW
• 256-bit or FP16 means 8 values per register, or 2 rows per register under NCHW
• Loss of 1:1 register-row mapping complicates assembly sequence for efficient NCHW transpose
• NHWC simply doubles the # of channels stored per register

Vectorization over channels is more portable and performant!

28 © 2019 Arm Limited

Use of GEMM to further optimize

• General Matrix-Matrix Multiply is a common, highly optimized operation for most
architectures, including Arm

• Inspection of the full Winograd convolution algorithm (Listing 1 in paper) shows:
• The fundamental operation is a multiply-accumulate
• There are 2 axis of data re-use:

• weight tile reuse over all input regions and
• input region reuse over all output channels

• Opportunity to leverage GEMM to do the computation in a highly parallel manner

29 © 2019 Arm Limited

Winograd execution using Matrix of GEMMs

30 © 2019 Arm Limited

Winograd execution using Matrix of GEMMs

31 © 2019 Arm Limited

Winograd execution using Matrix of GEMMs

32 © 2019 Arm Limited

Zoom on individual GEMM

33 © 2019 Arm Limited

Zoom on individual GEMM

34 © 2019 Arm Limited

Zoom on individual GEMM

35 © 2019 Arm Limited

Zoom on individual GEMM

36 © 2019 Arm Limited

Zoom on individual GEMM

37 © 2019 Arm Limited

Winograd execution using Matrix of GEMMs

38 © 2019 Arm Limited

Winograd execution using Matrix of GEMMs

Results

40 © 2019 Arm Limited

Experimental Setup

Platform: Huawei HiKey960 Development Platform – 4xA73 cluster
Networks: VGG19, VGG16, GoogleNet, Inception-v3, SqueezeNet
Other: FP32, batchsize 1, 4x multi-threaded through Arm Compute Library (ArmCL)

Measured individual per-layer performance as well as end-to-end run-time, compared
with highly optimized conventional ‘im2row GEMM’ convolution strategy

41 © 2019 Arm Limited

Benchmark Results

42 © 2019 Arm Limited

Conclusion

• ML is coming to the edge, hard and fast
• ARM CPUs are already widely deployed at the edge, so optimizing for performance

here has immediate impact
• Winograd domain is an alternative to conventional im2row/GEMM convolution that

reduces math, but requires care to fully realize benefit
• When done properly, can provide as much as a 2.5x speedup on real hardware for end-

to-end model inference

Benefits now available in ArmCL!

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

धɊवाद
 شكرًا
תודה

© 2019 Arm Limited

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

