
Quantizing Deep Convolutional
Networks for Efficient Inference

Raghu Krishnamoorthi, Facebook

Acknowledgements

• Most of the results presented here are from work done at Google as
part of the Tensorflow lite team.

• Refer to work from several colleagues at google including: Benoit
Jacob, Skiramantas Kligys, Dmitry Kalachenko, Suharsh Sivakumar and
Pete Warden.

• We also refer to work from facebook on quantization, based on the
work of Jongsoo Park, Bichen Wu, Maxim Naumov, Summer Deng,
Marat Dukhan, Bichen Wu, Peizhao Zhang and Peter Vajda.

Outline

• Motivation
• Quantization: Overview
• Quantizing deep networks

• Post Training quantization
• Quantization aware training

• Lower precision inference
• Hardware accelerator recommendations
• Model system co-design
• Looking ahead

Motivation(1)

• Data-center power consumption is doubling every year

Source: Deep Learning Inference in Facebook Data-Centers [1]

Motivation(2)
• Number of edge devices is

growing rapidly, lots of these
devices are resource
constrained.

Source: https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

Motivation(3)
• While models are

becoming more efficient,
high accuracy still implies
high complexity

From: Benchmark Analysis of
Representative Deep Neural Network
Architectures, Simone Bianco et al,

Quantization

• Many approaches to solve the problems outlined here:
• Better hardware accelerators: TPUs
• Optimized kernels: Cudnn, Intel MKL-DNN, FBGemm,Nnpack,
• Efficient deep network architectures: Nasnet, Mobilenet, FBNet

• A simpler approach that does not require re-design of models/new
hardware is quantization.

• Quantization refers to techniques to perform computation and storage at
reduced precision

Background: Quantization(1)

• Quantization refers to mapping values from fp32 to a lower precision
format.

• Specified by
• Format
• Mapping type
• Granularity

From:https://commons.wikimedia.org/w/index.
php?curid=69415943

fp32

fp16

bfloat16

int8

int4

binary

Background:Quantization(2)

• Mapping type
• Uniform: Quantized values are uniformly spaced. Further divided into

• Asymmetric: Quantized values obtained by rounding an affine transform of a floating point value
• Symmetric: Quantized values are obtained by rounding a scaled floating point value

• Non-uniform:
• Quantized values are non-uniformly spaced

Floating pt
values

Quantized
values

Quantized
values

Quantized
values

Floating pt
values

Symmetric Quantization Asymmetric Quantization Non-uniform Quantization
(Example: Kmeans)

Background:Quantization(3)
• We also consider different granularities of quantization:

• Per layer quantization
• Same mapping for all elements in a layer.

• Per row/ Per-channel quantization:
• Choose quantizer parameters independently for each row (fc layers) or for

each conv kernel (conv layers)
• Outlier aware quantization:

• Separate outliers to use lower precision arithmetic for bulk of weights.
• Dense computations for inliers with sparse computation for outliers that have

a large magnitude

Background: Quantization (4)

• So far, quantization is deterministic
• During training, we also consider modeling quantization

stochastically:
• For the case of symmetric quantization we perform stochastic quantization as:

𝑄 𝑥 = 𝑐𝑙𝑎𝑚𝑝 𝑟𝑜𝑢𝑛𝑑
௫ା௪

௦
, where w is uniformly distributed in (−

௦

ଶ
,

௦

ଶ
) and s is the

step size.
• Stochastic quantization is equivalent to adding noise and has a regularizing

effect [3]

Fake-quantization
• Emulate quantization by quantizing and de-

quantizing in succession
• Values are still in floating point, but with reduced

precision

• ௨௧
௫

௦

Fake Quantizer (top), showing the
quantization of output values.
Approximation for purposes of
derivative calculation (bottom).

Quantization:Benefits
Benefits Quantization

Applicability Broad applicability across models and use cases

Support Supported by x86, Nvidia Volta, ARM, Mali, QDSP

Software Support Kernel libraries widely available

Memory Size 4x reduction

Memory Bandwidth/Cache 4x reduction

Compute 2x to 4x speedup

Power Proportional to memory bandwidth savings

Quantization: Hardware Platforms

Platform Precision Support Kernel Library Support

ARM CPU Fp16, int8 ARM-CMSIS, GEMM-
LOWPE, QNNPACK

x86 Fp16, int8 MKL-DNN, FBGEMM

Nvidia Volta Fp16, int8, int4 (Turing) Cudnn, tensorRT

AMD Vega Fp16, int8 ROCm

Qualcomm DSP int8 SNPE, NN-API

ARM Mali Fp16, int8 ARM NN SDK/NN-API

Quantization: Challenges

Challenges Notes Mitigation

Accuracy drop Loss in accuracy can be too high for certain
applications

Quantization aware training

Kernel Support Wide variety of operators+multiple
hardware platforms

Improving software tool-chain
(TVM) to handle varied
backends.

“Complexity” Non-trivial: Requires calibration/training in
some cases

Support in software packages:
TensorRT, Tensorflow and
Pytorch is improving

Quantizing deep networks

Model Quantization: Overview

Train

Convert for
inference

Graph
Optimization

Kernel
Implementation

Train

Convert for
inference

Graph
Optimization

Kernel
Implementation

Quantization

Train

Convert for
inference

Graph
Optimization

Kernel
Implementation

Quantization

Fake Quantization

What to quantize?
• Only quantize parts of network that contribute significantly to performance

• May need to further reduce based on accuracy impact.

• Multiple ways to quantize a network with different impact:

Quantization scheme Memory bandwidth
reduction (Weights)

Memory bandwidth
reduction (Activations)

Compute
Speedup

Notes

Weight only
quantization to int8

4x 1x 1x Suitable for
embedding lookups

Dynamic
quantization

4x 1x 2x Suitable for fc layers
with small batches

Static quantization
(int32 accumulators)

4x 4x 2x Suited for all layers,
important for
convolutions

Static quantization
(int16 accumulators)

4x 4x 4x Requires lower
precision
accumulators

Post training quantization:
Weight compression
• Simplest quantization scheme is to compress the weights to lower

precision
• Requires no input data and can be done statically as part of preparing a model

for inference
• Hardware accelerators can benefit if de-compression is done after memory

access
• Trivial for case of fp16/int8 quantization of weights.

• K-means compression is also supported in select platforms and is amenable
to simple de-compression

• Scatter-Gather operation in select processors
• Supported in CoreML

Dynamic quantization

• Dynamic quantization refers to schemes where the activations are
read/written in fp32 and are dynamically quantized to lower precisions for
compute.

• Requires no calibration data
• Data exchanged between operations is in floating point, so no need to

worry about format conversion.
• Provides performance improvements close to static quantization when

memory access is dominated by weights
• Suitable for inference in RNNs
• Lesser gains for conv layers

• Supported by:
• DNNLOWP (facebook)
• Tensorflow Lite (Google)

Quantizing weights and activations

• Post training quantization refers to quantizing both weights and
activations to reduced precision, typically int8.

• Requires estimation of statistics of activations for determining
quantizer parameters.

• Quantizer parameters are determined by minimizing an error metric:
• KL Divergence: TensorRT
• Saturation error: Tensorflow Lite

Results

Setup
• All results were generated using tensorflow with weights and activations being fake quantized to

8 bits unless stated otherwise.
• Top-1 accuracy is evaluated on 50000 validation images of Imagenet.
• Batch norm was folded into the convolution prior to quantization for inference (except for pre-

activation pattern in Resnet-v2).
• Input image sizes were 224x224 or 299x299, matching the reference floating point

implementations at:
https://github.com/tensorflow/models/blob/master/research/slim/eval_image_classifier.py

• For weights we consider the following combinations:
• Asymmetric Per layer
• Symmetric per-layer
• Asymmetric per-channel
• Symmetric per-channel

• For activations, we consider only per-layer quantization
• Since activations are unsigned, there is no distinction between symmetric/asymmetric quantization

Baseline

Network Model Size (Num Parameters) Top-1 Accuracy (Imagenet)

Mobilenet-v1-0.25-128 0.47M 0.415

Mobilenet-v2-1-224 3.54M 0.719

Mobilenet-v1-1-224 4.25M 0.709

Nasnet-Mobile 5.3M 0.74

Mobilenet-v2-1.4-224 6.06M 0.749

Inception-v3 23.9M 0.78

Resnet-v1-50 25.6M 0.752

Resnet-v2-50 25.6M 0.756

Resnet-v1-152 60.4M 0.768

Resnet-v2-152 60.4M 0.778

Accuracy metrics measured on Imagenet validation set of 50000 images

Network Architectures

• Primarily convolutions followed by batch normalization and Relu units
• Kernels of different sizes, depth-wise, point-wise and group wise convolutions across

networks
• Skip connections to improve accuracy in certain cases
• Batch normalization is used in all cases

• Training:

• Inference

• Non-linearity: Either Relu or Relu6, which is a Relu which saturates
activations beyond 6.

𝑦 = 𝛾
௫ିఓಳ

ఙಳ
+ 𝛽, 𝜇 , 𝜎 are batch mean and standard deviation

𝑦 = 𝛾
௫ିఓ

ఙ
+ 𝛽 , 𝜇, 𝜎 are estimated mean and standard deviation from training

Weight only quantization: Results
Network Asymmetric, Per

Layer
Symmetric, Per
Channel

Asymmetric, Per
Channel

Floating point

Mobilenet-v2-1-224 0.001 0.698 0.698 0.719

Mobilenet-v1-1-224 0.001 0.591 0.704 0.709

Nasnet-Mobile 0.72 0.72 0.74 0.74

Mobilenet-v2-1.4-
224

0.004 0.74 0.74 0.749

Inception-v3 0.78 0.78 0.78 0.78

Resnet-v1-50 0.75 0.75 0.75 0.752

Resnet-v2-50 0.75 0.75 0.75 0.756

Resnet-v1-152 0.766 0.763 0.762 0.768

Resnet-v2-152 0.761 0.76 0.77 0.778

Post training quantization: Results
Network Asymmetric, Per

Layer
Symmetric, Per
Channel

Asymmetric, Per
Channel

Activation only
quantized

Floating point

Mobilenet-v2-1-
224

0.001 0.698 0.697 0.7 0.719

Mobilenet-v1-1-
224

0.001 0.591 0.703 0.708 0.709

Nasnet-Mobile 0.72 0.72 0.74 0.74 0.74

Mobilenet-v2-
1.4-224

0.004 0.74 0.74 0.742 0.749

Inception-v3 0.78 0.78 0.78 0.78 0.78

Resnet-v1-50 0.75 0.75 0.75 0.751 0.752

Resnet-v2-50 0.75 0.75 0.75 0.75 0.756

Resnet-v1-152 0.766 0.762 0.767 0.761 0.768

Resnet-v2-152 0.766 0.762 0.767 0.761 0.778

Observations
• Granularity of quantization:

• Per-channel quantization can provide good accuracy and can be a good baseline for post
training quantization of weights and activations, with asymmetric quantization providing
close to floating point accuracy for all networks.

• Model Size:
• Networks with more parameters like Resnets and Inception-v3 are more robust to

quantization compared to Mobilenets which have fewer parameters.
• There is a large drop when weights are quantized at the granularity of a layer, particularly for

Mobilenet architectures.
• Weight vs activation quantization:

• Activations can be quantized to 8-bits with almost no loss in accuracy.
• The dynamic ranges of the activations are low due to a combination of:

• Batch normalization with no scaling: Used in Inception-V3, which ensures that the activations of all
feature maps have zero mean and unit variance.

• ReLu6: Used in Mobilenets, which restricts the activations to be in a fixed range (0,6) for all feature
maps, thereby removing large dynamic range variations.

Observations(2)

• Why are mobilenets so hard to quantize?
• Batch normalization with strict limits on activation ranges (ReLu6) make the

folded weights have a large dynamic range.

Histogram of SQNR per convolutional kernel: Asymmetric, per layer (left), symmetric, per-channel (right)

Observations (3)
• Note large outliers for folded weights

Quantization aware training

Quantization aware training(1)

• Model all quantization artifacts during training
• Not to be confused with reduced precision training

• Fake-quantization to model quantization errors
• For training, we need to model the backward pass. An

approach that has worked well is the “straight through
estimator” (See [5]). We model the quantizer as a
piecewise linear function for purposes of calculating
the derivative.

• Can also model quantization during training by
stochastic quantization instead of deterministic
rounding in the forward pass.

Forward pass

Backward pass

Quantization aware training(2)
• All quantization related artifacts need to be faithfully modeled at training time.
• Example: Add and Concat involve re-scaling when one models the actual fixed point

implementation during training

Quantization Aware Training: Batch
Normalization
• For quantization, we need to model behavior of batch norm at

inference time during training.[4],[6]
• During inference, batch norm is folded into the weights and biases

ூ

ூ

• However, at training batch norm uses batch statistics.
• Non-trivial to model batch norm correctly during training, for more

details see [6]
• Tensorflow provides helper functions to perform this as a graph

rewrite.

Results

Network Asymmetric,
Per Layer, post
training quant

Symmetric, Per
Channel, post
training quant

Asymmetric,
Per Layer,
QAT

Symmetric, Per
channel QAT

Floating point

Mobilenet-v2-
1-224

0.001 0.698 0.709 0.711 0.719

Mobilenet-v1-
1-224

0.001 0.591 0.70 0.707 0.709

Nasnet-Mobile 0.72 0.72 0.73 0.73 0.74

Mobilenet-v2-
1.4-224

0.004 0.74 0.74 0.74 0.749

Inception-v3 0.78 0.78 0.78 0.78 0.78

Resnet-v1-50 0.75 0.75 0.75 0.751 0.752

Resnet-v2-50 0.75 0.75 0.75 0.75 0.756

Resnet-v1-152 0.766 0.762 0.765 0.762 0.768

Resnet-v2-152 0.766 0.762 0.76 0.76 0.778

• Quantization aware training provides the best accuracy and allows for simpler quantization schemes.

Performance

Server: FBGEMM (quantized) vs MKL-DNN (fp32) Mobile: Inference time: float vs quantized, TFLite, Pixel2
QNNPACK kernels provides an additional 2x speedup

Lower precision inference: Quantizing weights
• Four bit precisions for weights provides good accuracy, but needs to be

done selectively.
• Larger networks are more robust to lower precision
• Quantization aware training is critical
• Selectively quantizing layers of a network to different precisions can reduce the

accuracy drop

4-bit weights, 8 bit activations: Top-1 accuracy results

Lower precision inference: Quantizing
activations
• Activations can also be quantized to lower precision, but seem to be more

sensitive to quantization
• Weight quantization is a deterministic distortion that can be compensated during training
• Activation quantization can only be partially compensated, as one can only exploit statistics

of the activations. Individual inputs have some randomness that cannot be compensated for.
• Weights can be quantized at a fine granularity (per-channel) without impacting performance.

Quantizing activations at a finer granularity requires special hardware

Lower precision inference(3)
• Different layers of a neural network have different sensitivity to quantization

errors
• Exciting work on Differentiable architecture search [7] for determining precision

allocations across layers, showing excellent performance:

Architecture trade-offs(1)
• Clear tradeoff between number of parameters and robustness to

quantization
• One can also tradeoff number of feature maps vs precision

• Having 2x number of feature maps at 4-bits is better than 8 bit quantization of the
base network.

Architecture tradeoffs (2)

• Restricting ranges of activations apriori can hurt accuracy
• Preferable to learn activation ranges instead of fixing them beforehand.

Co-design: Training quantized models

• Designing models that provide good quantization performance requires co-
design of model architecture, training algorithms and hardware.

• Specific training enhancements include:
• Fine tune from floating point models for building quantized models.
• Freeze batch normalization statistics update to exactly model inference for further

benefits.
• Model exact rounding arithmetic done in hardware during training

• Stochastic quantization provides models robust to random perturbations of weights, but
underperforms techniques that model quantization as done at inference.

• Other enhancements to improve accuracy:
• Use distillation to train quantized student from floating point teacher network [3]

Considerations for hardware accelerators

Reduce memory bandwidth

• Memory access can dominate power consumption
• Compress weights and de-compress on the fly.
• Consider exploiting sparsity of weights and activations for better

compression.

• Don’t ignore activations: Most literature focusses on weights,
activations can be very significant for large resolution inputs.

• Fuse multiple operations
• Ensure hardware is flexible enough to fuse operations: Element-wise

operations should always be done without requiring additional read/write to
memory.

Support lower precision inference

• Consider supporting lower precisions for both weights and activations
• For memory accesses, consider 2/4/6/8/16 bit precisions for weights and

activations
• For compute, consider 4/8 bit precisions, chosen independently for weights

and activations

• Support quantization at a finer granularity
• Per channel/Per row
• Sparse engine for outlier aware quantization

• Symmetric quantization is sufficient, particularly with training.
• Consider supporting finer grained quantization for activations

Model hardware during training

• Provide support for modeling all hardware non-idealities during
training:

• Example: Using Relu vs Relu6 can affect training accuracy and exact hardware
details matter

• Example: Using 16-bit vs 32 bit accumulation should also be exposed during
training.

• Critical to get best performance/accuracy tradeoff.

Looking ahead (1)

• Co-design with hardware constraints
• Meta learning approaches to jointly learn architecture and weights during training, taking device

constraints into account, leading to efficient architectures.
• Example approaches include:

• Differentiable architecture search:
• B.Wu et al, Mixed precision quantization of convnets via differentiable neural architecture search
• A.Gordon et al, Fast and Simple resource constrained structure learning of deep networks

• Reinforcement Learning:
• M.Tan et al, MnasNet: Platform-Aware Neural Architecture Search for Mobile
• K. Wang et al, HAQ: Hardware-Aware Automated Quantization

• Bayesian optimization:
• X. Dai et al, ChamNet: Towards Efficient Network Design through Platform-Aware Model Adaptation

• White-box approaches:
• T. Yang, NetAdapt: Platform-Aware Neural Network Adaptation for Mobile Applications

Looking ahead(2)

• Ultra low precision networks for general use cases
• Binary /ternary weights/activations with close to floating point accuracy for select networks

(https://arxiv.org/abs/1612.01064v3, https://arxiv.org/abs/1612.01064v3)
• Novel approaches for quantization:

• Quantization as regularizing loss function: M.Naumov et al,
https://arxiv.org/pdf/1811.09862.pdf

• Quantization as optimization: M.Carriera, https://arxiv.org/abs/1707.04319v1
• Quantization for the backward pass

• Fp16 is already widely used: Nvidia, TPU (bfloat16)
• Interesting work on using 8 bit precision for backprop: Scalable Methods for 8-bit Training of

Neural Networks
• Quantization for distributed learning at the edge

• Federated Learning: Support backward pass operations, but at a low duty cycle
• Gradient compression

• Similar techniques for compressing weights can be applied for gradients.

References

1. J Park, M. Naumov et al, “Deep Learning Inference in Facebook Data Centers:
Characterization, Performance Optimizations and Hardware Implications”

2. Simone Bianco et al Benchmark Analysis of Representative Deep Neural Network
Architectures

3. A. Polino et al, “Model compression via distillation and quantization”
4. B.Jacob, S.Kligys et al,``Quantization and Training of Neural Networks for Efficient

Integer-Arithmetic-Only Inference''
5. M.Courbariaux, Y.Bengio et al, ``Binaryconnect: Training deep neural networks with

binary weights during propagations’
6. R.Krishnamoorthi, “Quantizing deep convolutional networks for efficient inference: A

whitepaper”
7. B.Wu et al, Mixed precision quantization of convnets via differentiable neural

architecture search”

